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Orthosummable Orthoalgebras
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We introduce notions of orthosummability and o-orthosummability for orthoal-
gebras, which generalize the notions of orthocompleteness and ¢-orthocom-
pleteness for orthomodular posets, and we characterize such orthoalgebras in
terms of their chains. We also show how to sum an infinite subset of an
orthoalgebra, and we prove a generalized associative law for such sums,

1. INTRODUCTION

In 1936, Birkhoff and von Neumann (1936) considered the lattice of
all closed subspaces of a separable infinite-dimensional Hilbert space as a
mathematical model for a calculus of quantum logic by regarding such a
lattice as a proposition system for a quantum mechanical entity. Such a
lattice is usually called a standard quantum logic. Since then, there have
been various attempts to abstract the standard quantum logics and their
sets of states (o-additive probability measures) and give a purely lattice-
theoretic characterization of such logics. This has led to studying (o-
complete) orthomodular lattices and (a-orthocomplete) orthomodular posets
and their states as an abstraction of the standard quantum logics and their
sets of states (Cook, 1978; D’Andrea and De Lucia, 1991; D’Andrea ef al.,
1991; Greechie, 1968; Gudder, 1965, 1988; Kalmbach, 1983, 1986; Lock,
1981; Mackey, 1963; Navara and Rogalewicz, 1991; Randall and Foulis,
1973, 1981).

Our abstraction of the standard quantum logic and its set of states is
what we shall call a o-orthoalgebra and its measures thereon. Orthoalge-
bras play an important role in the empirical logic approach to the mathe-
matical foundation of quantum mechanics initiated by Foulis and Randall

"Department of Mathematics and Computer Science, University of Denver, Denver, Colorado
80202. E-mail: ehabil@cs.du.edu.

1957
0020-7748/94/1000-1957807.00/0 © 1994 Plenum Publishing Corporation



1958 Habil

(Foulis and Randall, 1972; Foulis et al, 1992; Randall and Foulis,
1973, 1981) because a ftensor product can be defined for a large class of
these algebras (Foulis and Bennett, 1993; Randall and Foulis, 1981), while
no such product exists for orthomodular lattices or posets. Also, g-orthoal-
gebras are generalizations of Boolean g-algebras, standard quantum logics,
g-complete orthomodular lattices, and o-orthocomplete orthomodular
posets. Moreover, g-orthoalgebras provide a mathematical basis for non-
commutative measure theory in much the same way that o-fields of sets
provide a foundation for classical measure theory.

The main purpose of this paper is to study g-orthoalgebras and their
properties and thus set the stage to studying o-additive states and observ-
ables on such orthoalgebras (which we shall do in a subsequent paper). In
Section 2 we provide an in-depth review of the basic definitions and results
from the newly developing theory of orthoalgebras which will be used in
the following sections. In Section 3 we state and prove some fundamental
lemmas about orthoalgebras, some of which will be used in the subsequent
section. We also present a generalized associative law for orthogonal sums
in orthoalgebras. In Section 4, we introduce the notion of orthosummability
for orthoalgebras which can be considered as a natural extension of the
notion of orthocompleteness for orthomodular posets in that it coincides
with the latter notion if the underlying orthoalgebra happens to also be an
orthomodular poset. Then we give a definition of a g-orthoalgebra (sce
Definition 4.13) that is simpler and more natural than the rather strong
definition (see the introduction to Section 4) given earlier by Younce
(1987). Our definition does not depend on the blocks (maximal Boolean
subalgebras) of the orthoalgebra, and it makes it easier to define o-additive
measures or states on such orthoalgebras. Furthermore, our definition of
c-orthoalgebra generalizes the notion of o-orthocompleteness for ortho-
modular posets. We also give characterizations of orthosummable orthoal-
gebras, orthocomplete orthomodular posets, and o-orthoalgebras in terms
of their chains (see Theorems 4.4, 4.7, 4.9, and 4.14 and Corollaries 4.8 and
4.10).

About the time this paper was completed, Wilce and Feldman (1993)
considered another definition (see the introduction to Section 4) of a
o-orthoalgebra, which turned out to be equivalent to our definition of
o-orthoalgebra (Theorem 4.14). However, it is not clear whether the
uncountable version of their definition (i.e., Wilce and Feldman’s definition
of orthosummable orthoalgebra) is equivalent to our definition of ortho-
summable orthoalgebra.

For the most part the notation and symbols we use will be standard.
If X is a set, the cardinality of X is denoted by |X|. The power set of X is
denoted by 2(X) and if | X| = n, then 2(X) is sometimes denoted by 2". The
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symbols F(X), c#(X), and F£(X) denote, respectively, the collection of all
finite, cofinite, and infinite subsets of X. The symbols R, Z, and w denote,
respectively, the set of all real numbers, all integers, and all nonnegative
integers.

2. DEFINITIONS AND PRELIMINARY RESULTS FROM THE
THEORY OF ORTHOALGEBRAS

In this section, we shall review some definitions and results from the
theory of orthoalgebras as well as from the theory of orthomodular lattices
and posets. Most of the results of this section are known, and therefore we
omit their proofs, which can be found in the references cited at the end of
the paper. We also present some new results that will be used in the
following sections.

A partially ordered set or simply a poset is a set P together with a
binary relation < on P which is reflexive, antisymmetric, and transitive. A
poset (P, <) for which P contains two distinguished elements 0 and 1,
where 0 is the smallest element of P and 1 is the largest element of P, is
called a bounded poset.

Let (P, <) be a bounded poset, and let xeP. An element y e P is called
a complement of x in P if x vy exists, x Ay exists, x vy=1, and
x Ay =0. If every element of P has a complement in P, then P is called a
complemented poset. An orthocomplementation on P is a unary operation
" P— P such that Vx, yeP:

. x<y=y <x".
2. x" =x (where x":=(x")’).
3. x" is a complement for x.

If (P, <) is a complemented poset with an orthocomplementation ’, then
(P, <,’) is called an orthoposet (or orthocomplemented poset). Unless
confusion threatens, we will write P for (P, <, ). It can be shown (Halmos,
1963) that the generalized De Morgan laws hold in any orthoposet.

An orthoalgebra (OA) is a quadruple (L, @, 0, 1), where L is a set
containing two special elements 0, 1 and @ is a partly defined binary
operation on L that satisfies the following conditions Vp, ¢, reL:

(OA1) (Commutativity) If p @ q is defined, then q @ p is defined and
Pr®g=qgdp.

(OA2) (Associativity) If g ®r is defined and p ® (g @r) is defined,
then p @ q is defined, (p @ q) @ r is defined, and p D (g @ 1) =
(p@Dr.
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(OA3) (Orthocomplementation) For every pel there exists a unique
geL such that p @ gq is defined and p @ g = 1.
(OA4) (Consistency) if p @ p is defined, then p =0.

Let (L, @, 0, 1) be an OA and let p, ge L. We say that p is orthogonal
to ¢ in L and write p L ¢ if and only if p @ ¢ is defined in L. We define
p < g to mean that there exists reL such that p L r and g =p ®r. The
unique element g e L corresponding to p in condition (OA3) above is called
the" orthocomplement of p and is written as p’. It can be easily proved
(Foulis et al., 1992) that L is partially ordered by <, that 0 < p <1 holds
for all pel, that p L ¢ iff p < ¢’, and that (L, <,,0, 1) is an orthoposet
whenever L is an OA. Also, the following can be proved (Foulis ef al.,
1992; Riittimann, 1989; Gudder, 1988)Vp, ¢, rel:

1. If p<gq, then g =p@®(p®q’). This is called the orthomodular
identity (OMI). ,

2. If p L g, then p @ g is a minimal upper bound for {p, ¢} in the poset
L.

3. (Cancellation law) p,g Lrand p@r=g@®r=>p=gq.

4, (Cancellation law for inequalities) p,q Lr and p@r<g®r =
P =q.

5. p@0=p.

6. p@Pg=0=p=¢qg=0.

Let L be an OA. For p, q is called a subelement of g iff p <gq. If p is
a subelement of g, then, by the OMI, g =p @ (p ®¢’)’. In this case we
define the difference of ¢ and p in L by

g-p=(p®q)

The following elementary result is known. Nonetheless, we include a
proof for which no reference seems to exist in the literature.

Lemma 2.1 Let L be an OA, and a,b,x,yeLl be such that
a<x,b<y,and x 1 y. Then:

.a@bsx @y
2. a@b=x@®y=a=xand b=y’

Proof. 1. We have a <x <y’ <b’ = {a,b,x —a,y — b} is pairwise
orthogonal. Also, a<x=>x=a@®(x—a) and b<y=y=>b@(y—b).
These and the computativity and associativity of @ yield that x@y =
a@®b®(x —a)®(y — b), which implies that a®b <xDy.

2. Assume that a@®b =x®y. Then, as shown above, we have
x@r=@®hOx—-a@(y-bH=x@yP(x —a)d(y —b), which,
using the cancellation law, yields that (x —a) @ (y — b) = 0. Thus, using
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property 6 above, we have x —a =0 and y —b =0; hence x =a and
y=b W

An orthomodular poset (OMP) is an orthoalgebra P that satisfies the
following condition: For p,geP,p Lg=p vgexistsandp vg=p&q. It
can be shown (Foulis et al., 1992; Gudder, 1988) that this condition is
equivalent to the condition thatforp, g, reP,p Lg Lr Lp=(p@qg) L~
An orthomodular lattice (OML) is an OMP which is also a lattice. A Boolean
algebra is a distributive OML.,

Let L be an OA. A subset 4 < L is called a suborthoalgebra (sub-OA)
if 0,1e4 and, whenever p,gqed and p 1 g, it follows that p’ed and
pDgeA.

Proposition 2.2. Let L be an OA and let A € L be a sub-OA. For
pogedput p ®,q=p®qif p®q is defined. We have the following:

1. (4, ®4,0,1) is an OA.

2.pl,qiffip Lg.

3. pi=p.

4. ps, giffp<yg

Proof. All parts are obvious except perhaps the “if” part of 4. So we
prove this part. Suppose that p < ¢. Then 3reL such that ¢ = p ®r. Then,
by the OMI and the cancellation law, r = (p ®¢")’ed. Thus p < ,q. W

Proposition 2.2 states that if L is an orthoalgebra and A4 is a sub-OA
of L, then ®,, 1,, <,, and 4 are the restrictions of @, —, <, and ’ to
A, respectively. If p, ge A, then the notation p v“ g (resp., p A? q) stands
for the supremum (resp., infimum) of the set {p, ¢} as calculated in A.

Definition 2.3. Let L be an OA and 4 = L be a sub-OA. Then 4 is
called (1) a sub-OMP if p,gqeA, p L g =>p v*gqexists; (2) a sub-OML if
p.geA =p v*q exists; (3) a Boolean subalgebra if it is a distributive
sub-OML; and (4) a block if it is a maximal Boolean subalgebra under
set-theoretic inclusion.

Let L be an OA and let q, be L. We say that a is compatible with b and
write aCb iff {a, b} is contained in a Boolean subalgebra of L. A subset
X < L is called pairwise compatible iff aCh Va,beX. A subset X< L is
called jointly compatible iff X is contained in a Boolean subalgebra. A
subset X < L is called jointly orthogonal iff it is pairwise orthogonal and
jointly compatible. Let M < L. We define

J(L)={X < L: X is jointly orthogonal}
and
C(M):={xel:xCy VyeM}
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Note that the empty set and any singleton subject of L are jointly
compatible (and jointly orthogonal by default). Note also that if p, ge L and
p L g, then one can easily check that {0, 1,p,4,p ®¢,p’, ¢, (p Dq)’} is a
Boolean subalgebra that contains {p, ¢} and it has at most eight elements.
Consequently, it follows that every pairwise orthogonal subset of an orthoal-
gebra is pairwise compatible.

- Lemma 2.4. Let L be an orthoalgebra and let P be a sub-OMP of L.
If {b,...,b,} < Pis pairwise orthogonal, then b, @ - - - @ b, is defined (in
L), b, v¥+--- v¥Pb, exists (in P), and

bIC'B"'@bn:b] VP"' van

Proof. We proceed by induction on n. Since P is an OMP,
by Lb,=b vPb,=b,®b,. Assume n>1,b,® - -®b,_, is defined,
by vP---v?Ph,_ , exists, and

bl@”.@bn—lzbl VP”. Van,I

Since b; L b,Vie{l,...,n—1}, we have b,<b,Ve{l,....,n—1}=
byvPo - vPh_ <b.=(b,® - ®b, ) Lb. Hence b@ O
b, ®b,eP,(b;® - -®b,_,) v’b, exists and

bh@® - ®b,=b;® - ®b,) vPb,=b vF---vFPb,_  v:bh, R
Now Lemma 2.4 justifies the following.

Convention 2.5. Let L be an OA and let M ={x,,..., x,}eJ(L).
Then we shall write @ M to mean x, @ - - @ x,,, which, by Lemma 2.4,
equals x; v¥--- v¥x, for any sub-OMP P containing M.

The following lemma is known and its proof (Foulis et al., 1992; Lock,
1981) is merely routine.

Lemma 2.6. Let L be an OA, a, be L. Then aCb iff there exists a triple
{a,, by, c}eJ(L) such that

a=a,®c and b=b,dc

The following lemma, which will be used later, generalizes Lemma 15
of Kalmbach (1983, §4).

Lemma 2.7. Let B be a Boolean subalgebra of an OA L and 4, beB.
If a v b exists, then a v beB. Moreover, if L is an OMP, then a v b exists.

Proof. Let a, beB and assume that a v b exists. Since B is a Boolean
subalgebra, Lemma 2.6 shows that there exists a triple {a,, b;, ¢} < B such
that @, L b, Lc La,a=a,®c, and b=5b Hc. Moreover, a=a, ®
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clb;s0a®@b=a,®Dc®Hb,. Also,
a®by=a vib =a vic vibh
=a, vBc vEb v¥c
=av?®h

Thus we have a,b,<avb<a,@c®b=a®b,=a v®b;, and, since
a@®b, is a minimal upper bound for {g,b,} in L, we have av b =
a®b,=a v¥beB.

Next, assume that L is an OMP and let a, he B. We need to show that
a v b exists. By Lemma 2.6, there exists a triple {4, b, ¢} & B such that
alb Lela and ga=a,veand b=5>, vc Moreover, the hypothesis
that L is an OMP implies that a =a,@ ¢ L by; so

a®b=avb.=avecvb
={g;vevb)ve
={(g;veyvibvo
=g v b exists B

Note that Lemma 2.7 is no longer valid if the assumption that Bis a
Boolean subalgebra is weakened to assuming that B is a sub-OMP. For an
example, let X' ={1,2,3,4,5,6,7,8} and &s:={a < X:|a| is even}. Re-
place L by #(X), B by &, [which, as argued in Ramsay (1966), is a
sub-OMP of 2(X)), a by {1,3,6,8}, and b by {1,2,3,4,5,6} in Lemma
2.7 to see that it does not hold.

The following result is an immediate consequence of Lemma 2.7 and
the De Morgan law.

Corollary 2.8. Let P be an OMP. For a, beP,aCh =>avbandaabd
both exist.

Lemma 2.9. The union of any chain of Boolean subalgebras of an
orthoalgebra is a Boolean subalgebra.

Proof. Let L be an OA and let & be a chain of Boolean subalgebras
of L under set-theoretic inclusion. We claim that B =: U % is a Boolean
subalgebra. Clearly, B is closed under * and contains 0 and 1. Let a, beB.
We want to show that a v # b exists. Since 4 is a chain, there exists a Ce %
such that a, be C. Note that @ v © b is an upper bound for {a, b}. Let ucB
be an upper bound of {a, b}. Since # is a chain, there exists a De# such
that Cu{u} €D and C is a Boolean subalgebra of D. Now apply Lemma
2.7 to infer that a v¥bh =g v b < u. Tt follows that g v &b exists and
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a vZ =a vb. Hence B is a sub-OML of L. Now the distributivity of B
follows from the facts that # is a chain and each of its members is
distributive. W

It follows from Lemma 2.9 and Zorn’s Lemma that every Boolean
subaigebra of an orthoalgebra is contained in a block.

Let L be an OA and X < L. Then the sub-OA generated by X, which
we denote by I'(X), is the intersection of all sub-OA’s of L that contain X.

" Note that blocks of an OA always exist. In fact, every element p of an

OA L is contained in at least one block, since the Boolean subalgebra
generated by p (namely {0, 1, p, p'}), can be embedded into a maximal one.
Thus every orthoalgebra can be regarded as a union of blocks. In this
sense, an orthoalgebra is “locally Boolean.”

We would like to point out that our definition of a sub-OML of an OA
[as given in (2.3)] is weaker than that of a sub-OML of an OML that is
given in the literature (Kalmbach, 1983). In fact, if LisanOML and A € L
is a sub-OML of L as an OA, then we do not require the joins (resp.,
meets) of elements of 4 as calculated in 4 to coincide with their joins
(resp., meets) as calculated in L. For instance, consider the OML L = Gy,
whose Hasse diagram is given in Figure 1. The subset 4 = {0,a,4a’, e, ¢’, 1}
whose Hasse diagram is given in Figure 2 is a sub-OML of L as an OA.
But it is not a sub-OML of L as an OML since a vie=c #1=a ve.
Also, this example shows that a sub-OML of an OA need not be a
sub-OML of an OMP.

On the other hand, as shown in Lemma 2.7, our definition of a
Boolean subalgebra of an OA coincides with the usual definition of a
Boolean subalgebra of an OMP when the underlying OA happens to be an




Orthosummable Orthoalgebras 1965

0

Fig. 2. MO2.

OMP. One reason we are considering this weak definition of a sub-OML is
that over the years it has been a common practice in this field to define
subobjects of different objects from different categories. For instance,
sub-OMLs and Boolean subalgebras of an OMP are examples of such a
practice. Another reason is that this weak definition serves our purposes.

Let L be an OA. The following can be shown (see, for example, Foulis
et al., 1992): For p,q,reL, {p,q,r}eJ(L)iff p Lqand p® L, and L is
an OMP iff every three pairwise orthogonal elements of L are jointly
orthogonal. Tt can also be shown (Kalmbach, 1983; §4, Lemma 1) that in an
OML, pairwise compatible subsets are jointly compatible.

Evidently, every jointly orthogonal (resp., jointly compatible) subset of
an OA is pairwise orthogonal (resp., pairwise compatible) but not conversely,
as can be easily seen from the Wright triangle example (Foulis et al., 1992).
Even if L is an OMP, there may be subsets of L that are pairwise compatible,
but not jointly compatible, as Ramsay’s example shows (Ramsay, 1966).
Finally, if L is a Boolean algebra, then by definition, any two elements of L
are compatible. Hence C(L) = L. However, the converse need not be true, as
can be seen from the seven-point Fano projective plane example (Foulis et
al., 1992).

The following result gives an important necessary and sufficient condi-
tion for a sub-OML of an OA to be a Boolean subalgebra. It generalizes
the well-known result that an OML is a Boolean algebra iff disjoint
elements are orthogonal.

Theorem 2.10. Let L be an OA and let B be a sub-OML of L. Then
B is a Boolean subalgebra of L iff the following condition holds:

Vx,yeB, xafy=0=x1y
Proof. (=): Assume that B is a Boolean subalgebra, and let x, ye B be
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such that x v#y =0, Then, by the distributive law,
x=(x A%y vE(x A%y)
=x A%y

which implies that x <y’ and hence x <y, i.e., x L y.
(<=): Assume that the sub-OML B satisfies the stated condition. We
need to prove that B is distributive. Let x, y, ze B. Clearly,

xAB(yvED=(x A%y vE(x AB2) 2.
To show equality holds in (2.1), it suffices to show, thanks to the OMI, that
x AB(y vED) AB(x vEY) AB(x vEZ) =0 (2.2)

To this end, let beB be such that

b<{x,y vz, x" vBy ,x' vEz}
Since y Af[x A% (x" vEBy)] =0, the hypothesizéd condition implies that
x AB(x’ vEy) Ly It follows that b <x A% (x’ vZy’) <y’ Similarly,

b<z'. Thus b<y Afz =(y vPz). This and the assumption that
b <y v?®zshow that b =0. Now (2.2) follows. N

Using Varadarajan’s Lemma (Varadarajan, 1962, Proposition 3.8), it
is not difficult to show that if P is an OMP and x€P, then C(x) is a
sub-OMP of P. We conclude this section with the following result, which
will be used in the following sections.

Corollary 2.11. Let P be an OMP and X eF(P) be pairwise orthogo-
nal. Then I'(X) is a Boolean subalgebra of P and hence X is jointly
orthogonal.

Proof. Write X ={x,,...,x,}. We may assume that 0¢X. We pro-
ceed by induction on n. If n = 1, then X = {x,} and I'({x,}) = {0, 1, x, x'}
is a Boolean subalgebra that has at most four elements.

Assume that n > 1 and I'({x;,...,x,_,}) is a Boolean subalgebra.
Since x; L x, Vie{l,...,n—1}, we have {x,,...,x, ,} < C(x,). This
and the fact that C(x,) is a sub-OMP of P imply that I'({x,,...,x,_,})
C(x,). Now, by Lemma 9 of Ramsay (1966),

F(r({xl, R ,X,,_l}) U{xn}) = F({x;, ey xn})
is a Boolean subalgebra. This completes the induction. W

3. KEY LEMMAS

In this section we state and prove some key results about orthoalge-
bras. Some of these results will be used in proving theorems in the
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following section, and some have their own interest and may prove to be
useful in the study of orthoalgebras. We start with the following lemma,
which generalizes Lemma 2.14 of Rittimann {1989).

Lemma 3.1. Let L be an OA, let X < L be such that F(X) < J(L), and
let M, NeF(X). Then we have the following:
(i) MANc{0}if @ M L @ N. In either case,

PMODN=@ (MUN)
(i) McNiff @ M L(ED N). In cither case,
D Me(D N =[D wW\M)
(iii) (B M) L (@D N) iff (B NY =D (M\N). In either case
(®MS(D N =[D MnNY

Proof. 1t is essentially the same as the préof of Lemma 2.14 of
Riittimann (1989). B

Lemma 3.2. Let L be an OA. and let X < L be such that #(X) < J(L).
Then

BX)={@® M: MeF(X)}u{(D N): NeF(X)}

(where @ @5:=0, and @ {x} =xVxeX) is a sub-OMP (see Corollary
2.8) containing X.

Proof. By its definition, B(X) is closed under ’; and, by Lemma 3.1,
B(X) is closed under the @ of orthogonal pairs. Also, 0 = @ e B(X).
Now to prove that B(X) is a sub-OMP, we need to show that

a,beB(X), alb = avip exists

This follows immediately from Lemma 3.1, which yields that a v 2% p
exists and ¢ vEO b =a®b. W

Lemma 3.3. Let L, X, and B(X) be as in the statement of Lemma 3.2.
Then aCb for all q, be B(X).

Proof. It is enough to show that (&P MYC(@D N) VM, Negf'(X). For
(D MC(D N) = (D Mc(D Ny
= (@ MYC(D NY = aCb  Va,beB(X)
Now since

M=MNUMAN) and N=(N\M)u(MAnN)
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we have
PM=MNOD MnN)
DN=B VMDD MnN)

and
@ M\N) L D WV\M) LD VM) LD MN)

Since {® (M\N), ® (N\M), ® (MN)} < B(X) and, by Lemma
32, B(X) is a sub-OMP, Corollary 2.11 shows that {@ {(M\N),
@D (N\M), ® (M ~N)} is jointly orthogonal. Now, by Lemma 2.6,
(@MC(DN). =

The following theorem gives a sufficient (and, trivially, a necessary)
condition for a subset of an OA to be jointly orthogonal.

Theorem 3.4. Let L be an OA and let X < L. If every finite subset of
X is jointly orthogonal, then X is jointly orthogonal.

Proof. Assume that #(X) < J(L). Form B(X) as in the statement of
Lemma 3.2. By Lemma 3.2, B(X) is a sub-OMP, and, by Lemma 3.3, it is
pairwise compatible. Now, using the fact (Lock, 1981, Theorem 4.5.6) that
an OA is a Boolean algebra iff it is an OMP and pairwise compatible, we
infer that B(X) is a Boolean subalgebra containing X. W

Corollary 3.5. Let P be an OMP and let X € P. Then X is jointly
orthogonal iff X is pairwise orthogonal.

Proof. By Corollary 2.11, every finite pairwise orthogonal subset of X
is jointly orthogonal. Now apply Theorem 3.4. W

The following theorem is analogous to Theorem 3.4. It gives a
sufficient condition for a subset of an QA to be jointly compatible.

Theorem 3.6. Let L be an OA and let X < L. If every finite subset of
X is jointly compatible, then X is jointly compatible.

Proof. Assume that every finite subset of X is jointly compatible. Let
Fe#(X). Then, by assumption, F is contained in a Boolean subalgebra of
L. Hence F is contained in a smallest Boolean subalgebra, namely I'(F), the
Boolean subalgebra generated by F. It is well known (Halmos, 1963) that
I'(F) is isomorphic to the Boolean algebra 2* (of 2* elements), where
k =211, Hence it follows that

F,GeF(X), Fc G = T(F) isisomorphic to a subalgebra of I'(G)

Now, as argued in the proof of Lemma 2.9, the last implication shows that
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\Uresx) T(F) is a Boolean subalgebra containing X. Therefore X is jointly
compatible. M

Definition 3.7. Let L be an OA and let XeJ(L). If the supremum of
the set {@® F: FeF (X))} exists in L, then we define

Dx=V\ DF

Fe#(X)

Note that if L is an OA, g,belL, and a L b, then {a, b}eJ(L) and so
@ {a,b}=\/{0,0,b,a®b}=a®b

Similarly, for any {a,...,a,}eJ(L)
@ {al,...,an}:a,@"' (‘Dan

Thus the above definition of @ is consistent with the partial binary
operation @ that is defined on L and serves as a natural extension of its
(finitary) orthogonal sum that we established in Section 2 (see Convention
2.5).

Lemma 3.8 Let LbeanOA andlet X, Y L.
() If XnY<{0}, XuYeJ(L), and @ X, @ ¥ both exist, then
CPENSRE
(if) If, in addition to the hypotheses of (i), @ (XU Y) exists, then
(@ne@nN=@wuvy)

Proof. (i) Clearly @ F L @ G YFeF(X) and ¥YGeF(Y). So the
sets {® F: Fe#(X)} and {® G:GeF (Y)} are pairwise orthogonal. Fix
Fe#(X). Then

@F<(P G VGeF(Y)

30, 88 \/ger(r) @ G exists, the generalized De Morgan law implies that
®rs )\ @o-(y @)
GeF(Y) GeF(Y)

Since this holds VFe#(X), we obtain

\/ @pg( v @c;)'

FeF(X) GeF(Y)

and therefore DX L P 7.
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(i) Clearly,
@DFR< \/ @F VFReFX)

FeF(X)

PFE<s \V BG VFReF®X)

GeF(Y)

So, as \/Fe 0 @FL \/GE F(Y) @ G, part 1 of Lemma 2.1 implies that
VFeF(X),VFe#(Y), and YHeF (XU Y)

(@E)@(@Fz)s( V @F)@( v @G)

Fe#F(X) GeF(Y)

~@ns(\y @rle(y, ®a)

FeF(X) GeF(Y)
= \/ @Hs(\/ (—BF)@(\/ G—)G)
HeF (XU Y) Fe F{X) GeF(X)
On the other hand, it is clear that

®Fr \V ®6<s \V DH

FeF{X) GeF(Y) HeF(XuY)

$0, as (\/ res ) ® e (Veesm @ G) is a minimal upper bound for the
set {\/Fef(X) @ Fa \/Gegv'(y) @ G}, we have

(\/ @F)@( \Y; @G>= V @®H m

Fe#F(X) GeT(Y) HeF(XwY)

The following corollary is simply a paraphrasing of part (ii) of Lemma
3.8.

Corollary 3.9. Let L be an OA and let (x;),, (3;), = L. It \/; %\, »p»
and \/, ;(x, @y;) all exist in L, and if \/;x; L \/;y;, then

(\/ xi)@(\/ J"j) = \/ (x; @yj)
i 7 LJ

Lemma 3.10. Let L be an OA and let YeJ(L). If Ty, T, € Y are such
that @ T,, @ T, both exist and @ T, = @ T, then T\ =T>.

Proof. We may assume that 0¢Y. Suppose that 3teT,\T,. Since
T,u{t}eJ(L), there exists a block B=2T,u{t}. Then VFe#(T)),
@ F=\/?F <1, which implies that @ T\ =\/resr,) @ F<1" and
therefore t L @ T, =@ T,. As t < @ T, (since teT5), this implies that

_t 1t and hence ¢ =0, a contradiction. W
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The following theorem will be used later when we study ortho-
summable orthoalgebras and o-orthoalgebras. It generalizes Lemma 2 of
Ramsay (1966).

Theorem 3.11. Let L be an OA. If XeJ(L) is such that @D T exists in
Lforall T X and @ X =1, then

B(X)={® T:Tc X}

is a complete Boolean subalgebra of L containing X and the mapping
T @ T: 2(X)— L is an isomorphism of 2(X) onto B(X).

Proof. Since for every T < X, (X\T)nT < {0}, Lemma 3.8 implies
that

) (DT)=@ X\T)eB(X) VIcX
Also, Lemma 3.8 implies that

(ii) @ T L (‘B T, = ((‘D Tl)@(@ T) = @ (ThvT,)eB(X)
and, by the hypothesis, we have

(i) @ X =1eBX)

It follows from (i)—(iii) that B(X) is a sub-OA of L.

Claim. T+ @ T: #(X) — B is an isomorphism.

Note first that, by Lemma 3.10, the mapping @ is injective, and it is
clear that it is surjective. Note next that, by (ii), the mapping @ is a
morphism of OAs. Now to prove the claim, it suffices to show, using
Theorem 2.9 of Habil (1993), that VT, S < X,

@PT<PS=>TcS

To this end, suppose that @ T<P S We may assume that
T, S = X\{0}. Then, since B(X) is a sub-OA, there exists R = X such that

@RL®PTand
Ds=QTe@®RED TuR

so Lemma 3.10 implies that S = TUR and hence T < S. This proves the
claim.

Now since Z(X) is a Boolean algebra, the above claim shows that
B(X) is a Boolean algebra. M

The remaining part of this section, which is quite involved, is devoted
to proving a generalized associative law for the operation @ in orthoalge-
bras (see Theorem 3.16 below). As we shall see, this result generalizes a



1972 Habil

similar result (Foulis and Bennett, 1993, Lemma 2.9; Wilce and Feldman,
1993, Lemma 1.4) and will prove to be useful when we study ortho-
summable orthoalgebras in the next section. We first make a digression to
study “interval orthoalgebras.” Let L be an OA. Recall the notation that
for xelL,

[0, x] ={aeL:a < x}

Note that the interval [0, x], with the orthogonality relation being the
restriction of the orthogonality relation on L, need not be an OA under the
@ of L. For example, let L be the Wright triangle, where the atoms are
labeled as in Figure 3. Then {a,b,¢,d} <[0,x] and b L ¢, but bDc =
e £ x.

However, we can make each interval [0, x] in L into an OA as follows.

Definition 3.12, Let L be an OA and let xe L. We define an orthogo-
nality relation 1, on [0, x] as follows:

al.b iffa lbinLand a®b<x Va. be[0, x]

This induces a @ on [0, x], which we denote by @ ., where for a, b€[0, x],
a @, bis defined in [0, x] iff a L, b. It can be easily checked that with this
induced addition, ([0, x], ®,, 0, x) is an OA. We call such an OA an induced
orthoalgebra. Note also that the orthocomplementation p+»p”: L —L
induces a relative orthocomplementation a +— a’*: [0, x] - [0, x] which is
given by
a*=x—a Vae[0, x]

Furthermore, <, is the restriction of < to [0, x]. Indeed, suppose that
a,bel0,x]and a < bin L. Then IceL such that ¢ L aand a @ ¢ = b. Now

c<a®c=>b=<x=ce[0,x]. This shows that a < 4b. On the other
hand, if @, b€[0, x] and a <54 b, then a <b in L is obvious.

b Fig. 3. Greechie diagram of the Wright triangle.
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From now on, each interval [0, x] (xeL) will be considered to be an
induced orthoalgebra.

Lemma 3.13. Let L be an OA and let xelZ. If B is a Boolean
subalgebra of [0, x], then we have

a,beB and alb=>a®b<x (e, a L, b)

Proof. Let B be a Boolean subalgebra of [0, x] and let 4, be B. Clearly,
alb=anrtb=0=a AlPb=0 (because <y, ==<[oq)=>ar?
b=0 (because <p= <y 4lz) =a Lyb (by Theorem 2.10, since B is a
Boolean subalgebra of [0,x]) =>a L.b (by Proposition 2.2)<a®
b<x. N

Let L be an OA and let x, ye L be such that x L y. If Bis a sub-OA
of [0, x} and D is a sub-OA of [0, ], then & L dVbeR and VdeD. We
define

B®D:={b®d:beB,deD}

The following theorem is a key to proving the main result of this
section.

Theorem 3.14. Let L be an OA and let x, yeL be such that x L p. If
B is a Boolean subalgebra of [0, x] and D is a Boolean subalgebra of [0, y],
then B@ D is a Boolean subalgebra of [0, x ®y].

Proof. Note that if b@deB @D, thenb < xand d<y. So,as x Ly,
part 1 of Lemma 2.1 implies that 5@ d <x@®y. Thus B®D < [0, x® ).

First, we claim that B® D is a sub-OA of [0, x ®y]. To see this, let
by,b,eB and d,,d,eD be such that b, @®d,, b,®d,eB®D, and
bi®d, L,e,)b®@d,. This means that b, @d,, b, Ddy, (b,Dd)®
(b,®d,) < x@y. By the commutativity and associativity of @, we have
0, 0d) Db, ®dy) = (b, ®b,) D(d, ®d,). This implies that b, L b, and
d, L d,. Hence, by Lemma 3.13, b, 1, b, and d, 1, d,. Since B (resp., D)
is a Boolean subalgebra of [0, x] (resp., [0, x]), it follows that b, ® b,c B
and d, ® d,eD. Therefore

(b, ®d) Db, Dd)eBOD
For any b @ deB @ D, we have
x@y=0@(x—0)DUED(y—d))
=@ D —-b)D(y—d)
by the commutativity and associativity of @, which implies that
GBI =(x-b)®(y —~d)eBOD
Furthermore, 0 =0@0eB® D. Thus B@® D is a sub-OA of [0, x ® y].
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Second, we claim that B@ D is isomorphic to the Boolean algebra
B x D, where B x D = {(b,d): beB, deD}. To see this, define ¢: B x D —
B®D by

oMb, d)=b®d Y(b,d)eB x D

We have the following:

(i) ¢ is surjective. This is obvious.

(i) ¢ is injective. To see this, suppose that b, @ d, = b, ® d, for some
by, b,eB and d,, d,eD. We must show that b; = b, and d; =d,. Using the
commutativity and associativity of @, we have x =b, @ (x — b,) and
y=d@(y—4d); so

x@y=b@d®(x —b)D(y —dy)
=bh®dL®(x—b)B(y~d)
=0, ®(x—5) DB (y —d,))

This implies that b, L x — b, and d, L y — d,. Since b,, x — b,€B, and B is
a Boolean subalgebra of [0, x], Lemma 3.13 implies that b, ® (x — b;) < x.
Similarly, d,@®(y —d;) <y. Now part 2 of Lemma 2.1 implies that
b,®(x —b))=xand d,®(y —d,) =y. Hence

b,®(x —b))=b;D(x—h) and ®(y—d)=d®(y—4d)

So the cancellation law implies that b, = b, and d, =d,. Therefore ¢ is
one-to-one.

(iii) ¢ is a morphism. To see this, suppose that (b,,d,) L (b,, d;) in
B x D. This means that b, L. b, in B and d;, 1d, in D. Hence
by L,by,dy L ,d,, and so by <b¥=x—b, and d, <d¥ =y —d,. Since
xLy=x-bLy—d, part 1 of Lemma 2.1 now shows that 5, &
d<(x=b)®(y—d) =, D)%, e, ¢(b,d) Liay (b2, dp).
Moreover, the commutativity and associativity of @ yield that

(b1, d)) D (b2, dy)) = 96, @ by, d D )
=0,®d) Db, D)
= ¢(by,d) @ d(b,, dy)

This and the fact that ¢(x, y) = x @ y show that ¢ is a morphism of OAs.

(iv) ¢ ! preserves <. To see this, suppose that b, ®d,, b, D d,e
B®D, and b, ®d, < b,®d,. Then, since B@ D is a sub-OA, there exists
b@deB®D such that (b@d) L (b;@d,) and b,®d,=(b,®d) @
GDd)=(b®b) D @d) = ¢(b,,d) =d(b, Db, d, ®d). So, as ¢ is
one-to-one, this gives (b, d,) = (b, @b, d, ®d) = b,=b,®b and d, =
4, ®d=>5b<bh,and d, <d, = (b, dy) < (b,, d>).
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Now combining (i)—(iv) together, it follows from Theorem 2.9 of
Habil (1993) that ¢ is an isomorphism. Thus, as B x D is a Boolean
algebra, we conclude that B @® D is a Boolean subalgebra of [0, x ® y]. B

Here is an important application of Theorems 3.11 and 3.14.

Lemma 3.15. Let L be an OA and let X, YeJ(L) be such that D ¥
and @ Y exist, YU{(D X)'}, YU{(D 1)}eJL), @ A exists for all
AcXu{(® X))}, and @T exists for all Tcyo{(@ V)L If
@XL@Y, then XnY < {0} and XU YeJ(L).

Proof. First, if ze X Y, then the hypothesis that @xL @ Y and
the fact that subelements of orthogonal elements in any QA are aiso
orthogonal imply that z L z = z = 0. Therefore X nY < {0}.

Second, we show that XuYeJ(L). Let X:=XuU{(P X)'} ani
Y=Y u{(@® Y)’}. By the hypothesis, X, FeJ(L) and @ X, D ¥ exist.
Hence, by Lemma 38, @ X¥=(@® (@ Xx)=1 and ® 7=
(B VS(DP Y) =1. Now two applications of Theorem 3.11 vield that
there exist Boolean subalgebras B(X), B(Y) of L such that X, @ Xe R X}
and Y, @ YeB(T). Let

B:=BX)n[0,® X] and B,=B(¥)n[0. D ¥]

We claim that B, is a Boolean subalgebra of [0, @D X], B, is a Boclsan
algebra of [0, ® Y], X< B,, and Y < B,. To see this, note first that
0, P XeB,.Ifa,beB,anda Lgyb, thena Lbanda @b < D x. Also,
a,beB(X) = a®beB(X). Thereforea ® gy b =a®bheB,. If aeB,, thes
acB(X)and a < @ X. So, as a, D XeB(X), D X — aeB(X). Hence, 25
@ x—a< @ X, we obtain

a®¥=@ X —aeBX)n[0, D X] =5,

Thus we have shown that B, is a sub-OA of [0, @ X1]. To show that &, i
a Boolean subalgebra of [0, @ X], we must show, in view of Theorem
2.10, the following:

(a) a,beB, = a v b exists.
(b) a,beBy,a AP b=0=a Lgyb.

As for (a), let a, beB,. Then a, beB(X), and a, b < @ X. Since B
is a Boolean subalgebra of L,a v®®b exists and therefore
a vE®p < @ X [since @ XeB(X)]. This puts a vE¥ b in B,. Now, if
ueB, and a,b <u in B,, then a,b < u in B(X). Hence a v&P b <y and
therefore a v %1 b exists and equals a v 29 p,

As for (b), let a,beB, and assume that a A% h=0. Then
a A®Pb=a a®ib=a A% b =0.So, as B(X) is a Boolean subalgebra of
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L, Theorem 2.10 implies that @ L b. Hence a@b=a vZ® p < @ X and
therefore a L gy b.

We have shown that B, is a Boolean subalgebra of [0, @ X], and
similarly B, is a Boolean subalgebra of [0, @ Y]. This proves the claim. Now
apply Theorem 3.14 to get that B, @B, is a Boolean subalgebra of
[0, (D X)® (@D 1)) Since [0, (D X) @ (@D Y))'} is a Boolean subalge-
bra of [0, (B X) (D Y))], apply Theorem 3.14 again to get that B, ®
B,®{0,(® X)® (@ Y))'} is a Boolean subalgebra of [0, (D X)®
(@ No(DNS(D ¥)1=[0,1]=L Since XUYSB OB
0,(® X)® (D 7))}, we are done. W

Combining Lemmas 3.8 and 3.15, we obtain the following result, which
we consider the main result of this section.

Theorem 3.16. Let L be an OA and let X, YeJ(L) be such that @ x
and @ Y exist, XU{(D X)'}, YU{(® Y)}eJL), @ A exists for all
AcsXu{(@® Xx)'} and @ T exists for all ' < YU {(@D Y)’}. Then:

() BXLAPY < XnYc{0} and XuYel(l).
(i) If, in addition, @ (XU Y) exists, then
BYXLPY=>DParunN=(DNe@Y)

The following result, which appears as Lemma 2.9 of Foulis and
Bennett (1993) and as Lemma 1.4 of Wilce and Feldman (1993), is an
immediate consequence of Theorem 3.16.

Corollary 3.17. Let L be an OA and let F, Ge&F (L) nJ(L). Then
@FL® G+ FAGc{0} and FuUG is jointly orthogonal
In either case,
D EVO)=(DHB(DG)

Proof. The hypothesis that G,Ge#(L)nJ(L) implies that
@DF DG exist and FU{(D F)}, Gu{(@D G)}eJ(L), hence D A
exists VA< FU{(@ F)’} and @ T exists V[ = Gu{(@ G)'}. Now ap-
ply Theorem 3.16. W

We conclude this section with the following lemma, which will be used
in the next section.

Lemma 3.18. Let L be an orthoalgebra and let XeJ(L) be such that
a, =@ X and @ (Xu{a,)) both exist. Then X u{a,}eJ(L) and
D &ufah=1.

Proof. First, to show that X u {a, }eJ(L), it is enough to show, using
Theorem 3.4, that each Fe#(Xu{a,}) is jointly orthogonal. Let then
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FeF(Xu{a,}). If FcX, then, by the hypothesis, feJ(L) and we are
done. So we may assume that

F=Gu{a,} forsome GeF(X)

By the hypothesis, GeJ(L), so @ G La, =@ {a,} since D G <a,.
Therefore, by Corollary 3.17, F = G u{a, }eJ(L), as desired.

Second, to show that @ (X u{ay(}) =1, apply part (ii) of Lemma
3. W

4. ORTHOSUMMABLE ORTHOALGEBRAS

To be able to efficaciously define and manipulate orthogonally ¢-addi-
tive measures or states on orthoalgebras, one needs to define a reasonable
notion of ¢-orthosummapbility for orthoalgebras. This was first done by
Younce (1987). According to Younce, an orthoalgebra L is o-ortho-
summable (or what he calls a o-orthoalgebra) iff for every countable jointly
orthogonal subset X =L and for all blocks A, B containing X, the
supremum \/# X of X as calculated in 4 and the supremum \/# X of X as
calculated in B both exist and are equal. This definition seems rather strong
and it refers explicitly to the blocks of the orthoalgebra. Thus there has
been a need to find a more reasonable notion of ¢-orthosummability for
orthoalgebras that does not refer explicitly to the blocks of the orthoalge-
bra and that would be analogous to the well-known notion of ¢-orthocom-
pleteness for orthomodular posets as well as to o-completeness for Boolean
algebras (Gudder, 1988; Halmos, 1963; Kalmbach, 1983).

This we do in this section, where we introduce notions of ¢-ortho-
summability and (more generally) orthosummability for orthoalgebras that
naturally extend the notions of ¢-orthocompleteness and orthocomplete-
ness for orthomodular posets.

About the time this paper was written, Wilce and Feldman (1993)
offered another definition of g-orthosummability (or what they called a
g-orthoalgebra). According to Wilce and Feldman, an orthoalgebra is a
g-orthoalgebra iff every increasing sequence in it has a supremum. It turns
out that Wilce and Feldman’s notion of a g-orthoalgebra is equivalent to
our notion.

In the sequel, we prove that every chain in an orthosummable orthoal-
gebra (and every countable chain in a o-orthoalgebra) has a supremum;
and, as a consequence of this, we obtain the result that every chain in an
orthocomplete orthomodular poset has a supremum. We also present a
proof to a (strong) converse of the latter fact; namely, we show that if P
is an orthocomplemented poset in which (i) finite orthogonal suprema exist
and (ii) every chain has a supremum, then P is orthocomplete.
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Lemma 4.1. Every chain in an OA is jointly compatible.

Proof. Let L be an OA. We first claim that every finite chain in L is
jointly compatible. Let p, < p, <---<p, be a finite chain in L. We may
assume that it is strictly increasing. Consider the difference set

D={po, 1 = Pos P2—P1s- -+ Pn —Pn—1}
By Theorem 2.15 of Riittimann (1989), the set

P(D)={@® M: M =D}u{(® N):N<D}

is a sub-OMP of L containing D. Since d is clearly pairwise orthogonal,
Corollary 2.11 shows that D is jointly orthogonal. This implies that
{Pgs ..., P} I jointly compatible.

Now the lemma follows from the above claim and Theorem 3.6. MW

Definition 4.2. An OA L is called m-orthosummable for a cardinal m if
for every XeJ(L) with |X| < m we have

@x=\ DF
FeF(X)
exists (in ).
The following result is a generalization of the lemma in Holland

{1970} to orthoalgebras; its proof, which we omit, is essentially the same as
the proof of that lemma.

Lemma 4.3. Let L be an m-orthosummable OA, ¢ an ordinal number
satisfying |o| <m, and {b,: o <o} a chain in L that satisfies the following:

(i) by =0.
(i) f a limit ordinal <o = \/ {b,: a < B} exists and equals b.

Then for every ordinal f satisfying 2 < § < ¢ we have

\ {boa<Bl=@ {b,.1—b,:p+1<p}

The following result is a generalization of the theorem in Holland
{1970) to orthoalgebras. The proof which we provide here due to its
delicacy is essentially the same as the proof of that theorem.

Theorem 4.4. BEvery chain of <m elements in an m-orthosummable
OA has a supremum.

Proof. We proceed by induction. Let L be an m-orthosummable OA
and let {¢,: yeZ} be a chain in L with [E| < m and assume that the join of
any X’-indexed chain exists in L when |[Z’| < |Z|. Let ¢ be the least ordinal
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corresponding to |Z|. We may assume that |Z| is infinite and that we have
replaced the set T by the set {a:a <o} so that we are dealing with an
ordinal-indexed chain {c¢,:y <o}. If ¢ is not a limit ordinal, then
\/ {e,:y <6} =¢,_, and we are done. Thus we may assume that o is a
limit ordinal. In this case, the induction hypothesis implies that

b=\ {c,:p<a} exists Va<o

Note that « < f <o = b, <b; so that the family {b,:a <o} forms a
chain in L; and, moreover, it satisfies the following:

(1) by=0.
(ii) If p is a limit ordinal, then

\/{ba:‘x<B}=\/a<ﬂ\/{cp:p<°‘}=\/{Cp:p<ﬂ}=bﬂ

Since {b,:a <o} is a chain, it is jointly compatible by Lemma 4.1. It
follows that the pairwise orthogonal set

D={b, —b,a+1<0}

is jointly orthogonal; therefore € D exists, since L is m-orthosummable.

We claim that \/ {c,: p < o} exists and equals @ D. To sce this, we
first show that @ D is an upper bound for {c,: p <o}. Indeed, if § <a,
then, since o is a limit ordinal, we have f§ + 2 < ¢; whence, using Lemma
4.3,

<N, psp+1}=\/{ba<p+1}
=V {boia<B+2}=@ (b1 —b,ip+1<p+2}
<@bp

Next, we show that @ D is the least among all such upper bounds. To see
this, let D,:={bs, —bsg:f=0,1,...,0},a<o. We first establish the
following:

@D, <bh,., Va<o (4.1)

Indeed, fix @ <o and fix a block B that contains the chain {b,:y <gs}.
For every Fe#(D,), we have @ F= \/®F <b,,,. Hence @ D, =
Vrewwy @ F<b,,,, as desired. Now let ueL and ¢, <uVp<o. If
Fe# (D), then 3o < ¢ with F & D,. Since ¢ is a limit ordinal, o 4+ 1 < ¢. It
follows from (4.1) that

(—BFS@Dasba+1:\/{c91p<a+l}su
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which implies that @p-= \/FE FD) @ F <u. Therefore \/ {c,:p <o}
exists and equals @ D. This completes the proof of the claim and the
induction. M

Definition 4.5. We call an OA L-orthosummable if L is m-ortho-
summable for every m (or for m =|L|). We call a sub-OA 4 of an
orthosummable OA L-suborthosummable if for every X € A with XeJ(L),
we have @ Xed.

An OMP P is called orthocomplete (resp., o-orthocomplete) if every
(resp., every countable) pairwise orthogonal subset of P has a supremum
(in P). Using Corollary 3.5, one can easily show (see Lemma 4.6 below)
that an OMP is orthocomplete (resp., o-orthocomplete) iff it is ortho-
summable (resp., N,-orthosummable), where X = |w|. In this sense, our
notion of orthosummability (resp., ¥,-orthosummability) for OAs extends
the (well-known) notion of orthocompleteness (resp., o-orthocompleteness)
for OMPs.

It should be noted that Boolean subalgebras of orthosummable or-
thoalgebras need not be suborthosummable. For example, let

B(w)={M cw: |M|< o or |o\M| < oo}

Clearly, B(w) is a Boolean subalgebra of the orthosummable OA Z(w).
Since the positive even integers form a jointly orthogonal subset of B(w)
whose orthogonal sum (which equals its union) does not belong to
B(w), B(w) is not suborthosummable. ’

Lemma 4.6. An OMP is orthocomplete (resp., g-orthocomplete) iff it
is orthosummable (resp., ¥ -orthosummable).

Proof. (=): Assume that P is an orthocomplete OMP. Let X eJ(P).
Then \/ X exists, \/ F= @ F exists VFe#(X), and \/ X is an upper
bound for {\/ F: Fe#(X)}. Let ueP be such that \/ F <u VFeF(X).
Then, in particular, x <u VxeX and so \/ X<u Thus P x=
\/ rega (\/ F) exists and equals \/ X. Therefore P is orthosummable.

(<): Assume that P is an orthosummable OMP. Let X = P be
pairwise orthogonal. By Corollary 3.5, XeJ(P); so \/Fey(x)@ F exists.
Since P is an OMP, @ F=\/ FVFe#(X). Hence \/regr)® F =
\/reswuy V F =\ X exists and P is orthocomplete. W

Now Theorem 4.4 yields the following result.
Theorem 4.7. Every chain in an orthosummable OA has a supremum.

The following result was mentioned in Navara and Rogalewicz (1991,
Proposition 4.5) without proof. '



Orthosummable Orthoalgebras 1981

Corollary 4.8. Every chain in an orthocomplete OMP has a
supremum.

The following theorem shows that the converse of Corollary 4.8 holds
true even for orthoposets that are nonorthomodular.

Theorem 4.9. If P is an orthoposet in which (i) every finite orthogonal
set has a supremum, and (ii) every chain has a supremum, then P is
orthocomplete.

Proof (Gudder). Let X < P be an orthogonal set. We may assume that
0¢X. Let S be the set of all suprema that exist for subsets in X. By the
hypothesis, any chain in S has an upper bound in §; namely, its supremum.
By Zorn’s Lemma, S has a maximal element y,=\/ Y, for some ¥, < X.

We claim that Y,=X. Suppose, contrariwise, that there exists
xeX\Y,. Then y < x'VyeY,, so that y,=\/ Y, < x’. But then y, v x&S.
Moreover, yo<poVv x since if ys=y,vx (=x), then yi<x’; so0
V=y,vys<x” and x =0, which is a contradiction. But this, in turn,
contradicts the maximality of y,. Hence Y, =X and therefore y,=\/ X
exists, as desired. B

Corollary 4.10. Every chain in an orthosummable orthoalgebra in
which every block is suborthosummable has a supremum in every block
containing it, and this supremum is independent of the block containing
the chain.

Proof. Note first that it is enough to prove the corollary for an
m-orthosummable OA L, where m is any infinite cardinal.

Now a careful examination of the proofs of Lemma 4.3 and Theorem
4.4 and a careful rephrasing of the induction hypothesis reveal that all joins
that have been calculated in L can be calculated in any block B containing
the given chain. We omit the details since they are essentially the same as
the details of the proof of Theorem 4.4. We only point out that the
hypothesis that every block of L is suborthosummable will ensure that
€ D (as provided by the proof of Theorem 4.4) belongs to every block
containing the given chain. M

Lemma 4.11. Let L be an orthosummable OA in which every block is
suborthosummable and let XeJ(L). Then \/® X exists in any block B
containing X, and \/? X = @ X.

Proof. Let XeJ(L) and let B be a block containing X. Since L is
orthosummable, @ X exists; and since, by the hypothesis, B is subortho-
summable, @@ XeB. Evidently, @D X is an upper bound for X in B. Let
ueB and x <uV¥xeX. Then P F= \/*F<uVFe#(X) and hence
@ X =Vrerr @ F <u. Therefore \/Z X exists and equals @ ¥. W
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Theorem 4.12. Let L be an OA and consider the following statements:

1. L is orthosummable and each of its blocks is suborthosummable.
2. L is orthosummable in the sense of Younce.
3. Every block of L is a complete Boolean subalgebra.

Then (1) = (2) = (3).

Proof. (1) = (2): Let XeJ(L). Since, by (1), L is orthosummable,
@ X exists in L; and, by Lemma 4.11, \/® X exists and equals @ X for
all blocks B containing X. Thus \/?X exists in B for every block B
containing X and is independent of such a B.

(2) = (3): By (2), every block is an orthocomplete Boolean algebra,
and, by the theorem of Holland (1970) (which states that every orthocom-
plete OML is complete), every such Boolean algebra is complete. M

Definition 4.13. Let L be an OA. If L is Ny-orthosummable, then we
say that L is o-orthosummable or, simply, that [ is a o-orthoalgebra. We call
a sub-OA A4 of a c-orthoalgebra an L sub o-orthoalgebra if 4 is sub
Ng-orthosummable.

Note that Boolean c¢-algebras, unital Boolean o-rings, ¢-complete
OMLs, g-orthocomplete OMPs, and the Wright triangle are all examples
of ¢-orthoalgebras. Furthermore, the Wright triangle shows that the class
of all orthosummable OAs properly contains the class of all orthocomplete
OMPs. ‘

Note further that in Theorem 4.12, (3) = (1), as Example 3.19 of
Habil (1993) shows. Indeed, this example provides an OMP L which
is obtained by “pasting” together two disjoint copies L, and L, of
P(Z) along the “corresponding sections” of all finite or cofinite subsets
of L; and L,. As argued in (3.19) of Habil (1993), L is not g-orthocom-
plete. Consequently, L is not an ®,-orthosummable OA. Therefore L does
not satisfy (1) of Theorem 4.12. On the other hand, L, and L, are the
only blocks of L and both are complete. Thus L satisfies (3) of Theorem
4.12.

We do not know at this point whether (2) of Theorem 4.12 implies (1),
nor do we know whether every block of an orthosummable (resp., g-ortho-
summable) OA is suborthosummable (resp., sub o-orthosummable).

The following result gives a characterization of o-orthoalgebras in
terms of their countable chains. Moreover, it shows that the converse of the
version of Theorem 4.7 involving countable L holds true. However, we do
not know at this point whether the full converse of Theorem 4.7 holds true.
That is, we do not know whether an OA in which every chain has a
supremum is orthosummable.
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Theorem 4.14. Let L be an orthoalgebra. The following statements are
equivalent:

1. L is a o-orthoalgebra,
2. Every increasing sequence in L has a supremum (in L); that is, L is
a o-orthoalgebra in the sense of Wilce and Feldman (1993).

Proof. (1) = (2): This part is a consequence of Theorem 4.7.

(2) = (1) Let {x; }ie€J(L). Set 5,=@7_ox; (n=0,1,2,...). Ev-
idently, (5,),c., 15 increasing; so, by (2), \/,eq 5, €Xists.

We claim that @, x, exists and equals V new S+ Indeed, notice first
that FeZ({x;}icu) = FS{X,X1,...,x,} for some new = @ F <

{xs X1s ..., X, } for some new = @ F<\/,.,s,. This shows that
\/sew S» is an upper bound for {@ F: FeF({x,};c.)}. Second, we show
that \/,.c., 5, is the least among all such upper bounds. To this end, let ue L

and @ F <uVFeF({x;},c,). Then, in particular, we have s, < u Yaeo.
Hence \/,c,, 5, < u, and the claim is proved. B
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