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We introduce notions of 0rthosummability and a-orthosummability for orthoal- 
gebras, which generalize the notions of orthocompleteness and a-orthocom- 
pleteness for orthomodular posets, and we characterize such orthoalgebras in 
terms of their chains. We also show how to sum an infinite subset of an 
orthoalgebra, and we prove a generalized associative law for such sums. 

1. INTRODUCTION 

In 1936, Birkhoff and von Neumann (1936) conside, red the lattice of 
all closed subspaces of a separable infinite-dimensional Hilbert space as a 
mathematical model for a calculus of quantum logic by regarding such a 
lattice as a proposition system for a quantum mechanical entity. Such a 
lattice is usually called a standard quantum logic. Since then, there have 
been various attempts to abstract the standard quantum logics and their 
sets of states (a-additive probability measures) and give a purely lattice- 
theoretic characterization of such logics. This has led to studying (a- 
complete) orthomodular lattices and (a-orthocomplete) orthomodular posets 
and their states as an abstraction of the standard quantum logics and their 
sets of states (Cook, 1978; D'Andrea and De Lucia, 1991; D'Andrea et al., 
1991; Greechie, 1968; Gudder, 1965, 1988; Kalmbach, 1983, 1986; Lock, 
1981; Mackey, 1963; Navara and Rogalewicz, 1991; Randall and Foulis, 
1973, 1981). 

Our abstraction of the standard quantum logic and its set of states is 
what we shall call a a-orthoalgebra and its measures thereon. Orthoalge- 
bras play an important role in the empirical logic approach to the mathe- 
matical foundation of quantum mechanics initiated by Foulis and Randall 
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(Foulis and Randall, 1972; Foulis et al., 1992; Randall and Foulis, 
1973, 1981) because a tensor product can be defined for a large class of 
these algebras (Foulis and Bennett, 1993; Randall and Foulis, 1981), while 
no such product exists for orthomodular lattices or posets. Also, o.-orthoal- 
gebras are generalizations of Boolean o.-algebras, standard quantum logics, 
o.-complete orthomodular lattices, and o.-orthocomplete orthomodular 
posets. Moreover, o.-orthoalgebras provide a mathematical basis for non- 
commutative measure theory in much the same way that o.-fields of sets 
provide a foundation for classical measure theory. 

The main purpose of this paper is to study o--orthoalgebras and their 
properties and thus set the stage to studying ~r-additive states and observ- 
ables on such orthoalgebras (which we shall do in a subsequent paper). In 
Section 2 we provide an in-depth review of the basic definitions and results 
from the newly developing theory of orthoalgebras which will be used in 
the following sections. In Section 3 we state and prove some fundamental 
lemmas about orthoalgebras, some of which will be used in the subsequent 
section. We also present a generalized associative law for orthogonal sums 
in orthoalgebras. In Section 4, we introduce the notion of orthosummability 
for orthoalgebras which can be considered as a natural extension of the 
notion of orthocompleteness for orthomodular posets in that it coincides 
with the latter notion if the underlying orthoalgebra happens to also be an 
orthomodular poset. Then we give a definition of a o.-orthoalgebra (see 
Definition 4.13) that is simpler and more natural than the rather strong 
definition (see the introduction to Section 4) given earlier by Younce 
(1987). Our definition does not depend on the blocks (maximal Boolean 
subalgebras) of the orthoalgebra, and it makes it easier to define o.-additive 
measures or states on such orthoalgebras. Furthermore, our definition of 
o.-orthoalgebra generalizes the notion of o.-orthocompleteness for ortho- 
modular posets. We also give characterizations of orthosummable orthoal- 
gebras, orthocomplete orthomodular posets, and o--orthoalgebras in terms 
of their chains (see Theorems 4.4, 4.7, 4.9, and 4.14 and Corollaries 4.8 and 
4.10). 

About the time this paper was completed, Wilce and Feldman (1993) 
considered another definition (see the introduction to Section 4) of a 
o.-orthoalgebra, which turned out to be equivalent to our definition of 
o--orthoalgebra (Theorem 4.14). However, it is not clear whether the 
uncountable version of their definition (i.e., Wilce and Feldman's definition 
of orthosummable orthoalgebra) is equivalent to our definition of ortho- 
summable orthoalgebra. 

For the most part the notation and symbols we use will be standard. 
If X is a set, the cardinality of X is denoted by IXI. The power set of X is 
denoted by ~(X) and if IX I = n, then ~(X) is sometimes denoted by 2 n. The 
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symbols ~ ( X ) ,  c~(X),  and J ( X )  denote, respectively, the collection of all 
finite, cofinite, and infinite subsets of X. The symbols R, Z, and co denote, 
respectively, the set of all real numbers, all integers, and all nonnegative 
integers. 

2. DEFINITIONS AND PRELIMINARY RESULTS FROM THE 
THEORY OF ORTHOALGEBRAS 

In this section, we shall review some definitions and results from the 
theory of orthoalgebras as well as from the theory of orthomodular lattices 
and posets. Most of the results of this section are known, and therefore we 
omit their proofs, which can be found in the references cited at the end of 
the paper. We also present some new results that will be used in the 
following sections. 

A partially ordered set or simply a poset is a set P together with a 
binary relation -< on P which is reflexive, antisymmetric, and transitive. A 
poset (P, <_) for which P contains two distinguished elements 0 and 1, 
where 0 is the smallest element of P and 1 is the largest element of P, is 
called a bounded poset. 

Let (P, <-_ ) be a bounded poset, and let x eP. An element y ~P is called 
a complement of x in P if x v y  exists, x A y  exists, x v y = l ,  and 
x A y = 0. If  every element of P has a complement in P, then P is called a 
complemented poset. An orthocomplementation on P is a unary operation 
': P -~P  such that Vx, yEP: 

1. x < - y ~ y ' < - x ' .  
2. x " =  x (where x",= (x')'). 
3. x '  is a complement for x. 

If (P, -<) is a complemented poset with an orthocomplementation ', then 
(P, <,  ') is called an orthoposet (or orthocomplemented poser). Unless 
confusion threatens, we will write P for (P, <-, '). It can be shown (Halmos, 
1963) that the generalized De Morgan laws hold in any orthoposet. 

An orthoalgebra (OA) is a quadruple (L, •, 0, 1), where L is a set 
containing two special elements 0, 1 and @ is a partly defined binary 
operation on L that satisfies the following conditions Vp, q, r~L: 

(OAI) (Commutativity) If  p q)q is defined, then q Op is defined and 
p (~q = q (~ p. 

(OA2) (Associativity) If  q �9 r is defined and p q)(q G r) is defined, 
then p @ q is defined, (p �9 q) G r is defined, and p G (q @ r) = 
(P Oq) Gr .  
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(OA3) (Orthocomptementation) For  every pEL  there exists a unique 
q e L  such that p @ q is defined and p ~ q = 1. 

(OA4) (Consistency) if p ~ p  is defined, then p = 0. 

Let (L, @, 0, I) be an OA and let p, qeL.  We say that p is orthogonat 
to q in L and write p • q if and only if p @ q is defined in L. We define 
p-< q to mean that there exists t e L  such that p • r and q = p ~ r .  The 
unique element q e L  corresponding to p in condition (OA3) above is called 
the  orthocomplement of  p and is written as p ' .  It can be easily proved 
(Foulis et al., 1992) that L is partially ordered by -<, that 0 - p  -< 1 holds 
for all p e L ,  that p • q i f fp  -< q', and that (L, -<, ', 0, 1) is an orthoposet 
whenever L is an OA. Also, the following can be prove~ (Foulis et aL, 
1992; Rfittimann, 1989; Gudder, 1988)Vp, q, reL:  

1. If  p <-q, then q = p  @(p  ~ q ' ) ' .  This is called the orthomodular 
identity (OMI). 

2. I f p  _L q, then p @ q is a minimal upper bound for {p, q} in the poset 
L. 

3. (Cancellation law) p, q • r and p ~ r = q G r ~ p = q. 
4. (Cancellation law for inequalities) p, q • r and p ~ r < q @ r 

p<-q. 
5. p @0 =p. 
6. p @ q = O ~ p = q = O .  

Let L be an OA. For  p, q is called a subelement of  q iff p < q. I f  p is 
a subelement of  q, then, by the OMI, q = p @ (p @ q') ' .  In this case we 
define the difference of  q and p in L by 

q -p ,=(p~3q ' ) "  

The following elementary result is known. Nonetheless, we include a 
proof  for which no reference seems to exist in the literature. 

Lemma 2.1. Let L be an OA, and a,b ,x ,  y e L  be such that 
a < x , b ~ y ,  a n d x •  Then: 

1. a @ b < _ x ~ y .  
2. a O b  = x @ y  ~ a  = x  and b = y .  

Proof. 1. We have a -< x < y '  -< b'  =~ {a, b, x - a, y - b} is pairwise 
orthogonal. Also, a -< x =~ x = a @ (x - a) and b -< y =~ y = b @ (y  - b). 
These and the computativity and associativity of  @ yield that x O y  = 
a @ b @ (x - a) @ (y  - b), which implies that a @ b < x @ y. 

2. Assume that a@b = x @ y .  Then, as shown above, we have 
x @ y = ( a ~ b ) ~ ( x - a ) @ ( y - b )  = x ~ y ~ ( x - a ) ~ ( y - b ) ,  which, 
using the cancellation law, yields that ( x -  a ) ~ ( y -  b ) =  0. Thus, using 
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property 6 above, we have x - a  = 0 and y -  b =0 ;  hence x = a and 
y = b .  �9 

An orthomodular poset (OMP) is an orthoalgebra P that satisfies the 
following condition: For  p, q ~ P, p 2. q =~ p v q exists and p v q = p �9 q. It 
can be shown (Foulis et al., 1992; Gudder, 1988) that this condition is 
equivalent to the condition that forp ,  q, r~P, p _k q A_ r A- p ~ (p @q) A, r. 
An orthomodutar lattice (OML) is an OMP which is also a lattice. A Boolean 
algebra is a distributive OML. 

Let L be an OA. A subset A _c L is called a suborthoalgebra (sub-OA) 
if 0 ,1~A and, whenever p , q ~ A  and p A_q, it follows that p '6A  and 
p G q E A .  

Proposition 2.2. Let L be an OA and let A _ L be a sub-OA. For  
p, q ~A put p Oa  q ,=p �9 q if p @ q is defined. We have the following: 

1. (A, GA, 0, 1) is an OA. 
2. p A'Aq iff p • q. 
3. p ,A=p, .  
4. p -<Aq i f fp  -<q. 

Proo/'. All parts are obvious except perhaps the " i f "  part of 4. So we 
prove this part. Suppose that p < q. Then ~rsL  such that q = p  Gr.  Then, 
by the OMI and the cancellation law, r = (p G q') 'sA.  Thus p --<-A q. �9 

Proposition 2.2 states that if L is an orthoalgebra and A is a sub-OA 
of L, then OA, A-A, ---A, and ,A are the restrictions of  @, - ,  <-, and ' to 
A, respectively. If p, qsA ,  then the notation p v A q (resp., p ^ ~ q) stands 
for the supremum (resp., infimum) of the set {p, q} as calculated in A. 

Definition 2.3. Let L be an OA and A ~_ L be a sub-OA. Then A is 
called (1) a sub-OMP if p, q s A, p • q :~ p v A q exists; (2) a sub-OML if 
p, q EA =~ p v Aq exists; (3) a Boolean subalgebra if it is a distributive 
sub-OML; and (4) a block if it is a maximal Boolean subalgebra under 
set-theoretic inclusion. 

Let L be an OA and let a, b ~ L. We say that a is compatible with b and 
write aCb iff {a, b} is contained in a Boolean subalgebra of  L. A subset 
X c L is called pairwise compatible iff aCb Va, b~X. A subset X __ L is 
called jointly compatible iff X is contained in a Boolean subalgebra. A 
subset X ___ L is called jointly orthogonal iff it is pairwise orthogonal and 
jointly compatible. Let M ~_ L. We define 

J(L) ,= {X c_ L: X is jointly orthogonal} 

and 

C(M) := {x~L: xCy Vy~M} 
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Note that the empty set and any singleton subject of L are jointly 
compatible (and jointly orthogonal by default). Note also that if p, q e L  and 
p 2_ q, then one can easily check that {0, 1, p, q, p @ q, p ' ,  q', (p @ q)'} is a 
Boolean subalgebra that contains {p, q} and it has at most eight elements. 
Consequently, it follows that every pairwise orthogonal subset of an orthoal- 
gebra is pairwise compatible. 

Lemma 2.4. Let L be an orthoalgebra and let P be a sub-OMP of L. 
I f  { h i ,  �9 �9 �9 , b. } _~ P is pairwise orthogonal, then bl 0 "  " "@ b. is defined (in 
L), bl v P . - .  v p b. exists (in P), and 

b l @ ' " @ b ,  =bl v P' '"  vPbn 

Proof. We proceed by induction on n. Since P is an OMP, 
b12-b2=~bl  v p b 2 = b l @ b 2 .  Assume n > l ,  b l @ ' " @ b n _ l  is defined, 
bl v p. - �9 v P b . _ l  exists, and 

b l @ " ' @ b ~ _ l = b l  v ~ ' ' "  v~bn 1 

Since bi2-b, Vie{1 . . . . .  n - l } ,  we have b , < b ' , V e { 1  . . . . .  , n - l }  
bl v P' '"  v P b , _ l  < b ' n = ~ ( b l O ' " @ b , _ l )  Lb , .  Hence b l @ . . . @  
b,_ 1 @ b, eP,  (bl @" �9 �9 @ b,_ 1) v P b, exists and 

bl@" " ' @ b ,  = ( b l @ "  "@b ,__ l )  v P b ,  = b l  v P ' ' "  v P b , - i  vPbn �9 

NOW Lemma 2.4 justifies the following. 

Convention 2.5. Let L be an OA and let M = {Xl . . . .  , x ,}eJ(L).  
Then we shall write ( ~ M  to mean Xl @ " "  @x, ,  which, by Lemma 2.4, 
equals xl v P . "  v ~x ,  for any sub-OMP P containing M. 

The following lemma is known and its proof  (Foulis et al., 1992; Lock, 
1981) is merely routine. 

Lemma 2.6. Let L be an OA, a, beL. Then aCb iff there exists a triple 
{al, bl, c} eJ(L) such that 

a = a l @ c  and b = b  1@c 

The following lemma, which will be used later, generalizes Lemma 15 
of  Kalmbach (1983, w 

Lemma 2. 7. Let B be a Boolean subalgebra of  an OA L and a, b e B. 
If  a v b exists, then a v b eB. Moreover, if L is an OMP, then a v b exists. 

Proof. Let a, beB  and assume that a v b exists. Since B is a Boolean 
subalgebra, Lemma 2.6 shows that there exists a triple {al, bl, e} _ B such 
that a l - L b ~ 2 - c 2 - a ~ , a = a ~ @ c ,  and b = b ~ @ e .  Moreover, a = a ~ @  
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c _L b~ ; so a G bl = at | c @ bt. Also, 

a @ b l = a  v B b l = a l  v B c  v e b t  

= a  t v B c  VBbl VBC 

= a  v B b  

Thus we have a, b t < - a v b < - a l O c G b ~ = a O b ~ = a  v ~ b ;  and, since 
a O b l  is a minimal upper  bound for {a, bt} in L, we have a v b  = 
a G b l = a  v ~ b ~ B .  

Next, assume that L is an OMP and let a, b e B. We need to show that  
a v b exists. By Lemma 2.6, there exists a triple {a~, b~, c} _ B such that 
a~ _1_ b 1 1 e • at and a = a~ v c and b = b I v c. Moreover, the hypothesis 
that L is an OMP implies that a = a~ @ c .L b~ ; so 

a@bl  = a  v b= = a  l v c v bl 

= ( a ~  v c  v b l )  v c  

= (a~ v c) v (b~ v c) 

= a v b e x i s t s  [] 

Note  that Lemma 2.7 is no longer valid if the assumption that B is a 
Boolean subalgebra is weakened to assuming that B is a sub-OMP. For  an 
example, let X = {1, 2, 3, 4, 5, 6, 7, 8} and gs.-= {a ~ X: lal is even}. Re- 
place L by ~ (X) ,  B by ~8 [which, as argued in Ramsay (1966), is a 
sub-OMP of  ~(X)],  a by {1, 3, 6, 8}, and b by {1, 2, 3, 4, 5, 6} in Lemma 
2.7 to see that it does not hold. 

The following result is an immediate consequence of  Lemma 2.7 and 
the De Morgan law. 

Corollary 2.8. Let P be an OMP. For  a, beP ,  aCb ~ a v b and a A b 
both exist. 

Lemma 2.9. The union of any chain of  Boolean subalgebras of  an 
orthoalgebra is a Boolean subalgebra. 

Proof. Let L be an OA and let N be a chain of  Boolean subalgebras 
of  L under set-theoretic inclusion. We claim that B =." U N is a Boolean 
subalgebra. Clearly, B is closed under ' and contains 0 and 1. Let a, b eB. 
We want to show that a v ~ b exists. Since ~ is a chain, there exists a C ~  
such that  a, b ~ C. Note  that a v c b is an upper bound for {a, b }. Let u e B  
be an upper bound of  {a, b}. Since ~ is a chain, there exists a DEs~ such 
that C u {u} ~ D and C is a Boolean subalgebra of  D. Now apply Lemma 
2.7 to infer that a v C b  = a v ~  b <- u. It  follows that a v B b  exists and 
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a v B = a v c b. Hence B is a sub-OML of L. Now the distributivity of  B 
follows from the facts that ~ is a chain and each of its members is 
distributive. �9 

It follows from Lemma 2.9 and Zorn's Lemma that every Boo&an 
subalgebra of an orthoalgebra is contained in a block. 

Let L be an OA and X _c L. Then the sub-OA generated by X, which 
we denote by F(X), is the intersection of  all sub-OA's of L that contain X. 

Note that blocks of  an OA always exist. In fact, every element p of  an 
OA L is contained in at least one block, since the Boolean subalgebra 
generated by p (namely {0, 1, p, p'}), can be embedded into a maximal one. 
Thus every orthoalgebra can be regarded as a union of  blocks. In this 
sense, an orthoalgebra is "locally Boolean." 

We would like to point out that our definition of a sub-OML of an OA 
[as given in (2.3)] is weaker than that of a sub-OML of an OML that is 
given in the literature (Kalmbach, 1983). In fact, i f L  is an OML and A _~ L 
is a sub-OML of L as an OA, then we do not require the joins (resp., 
meets) of elements of A as calculated in A to coincide with their joins 
(resp., meets) as calculated in L. For  instance, consider the OML L = Gt2 
whose Hasse diagram is given in Figure 1. The subset A = {0, a, a ' ,  e, e', 1 } 
whose Hasse diagram is given in Figure 2 is a sub-OML of  L as an OA. 
But it is n o t a s u b - O M L o f L a s a n O M L s i n c e a  v L e = c ' # l = a  v ~e. 
Also, this example shows that a sub-OML of  an OA need not be a 
sub-OML of  an OMP. 

On the other hand, as shown in Lemma 2.7, our definition of a 
Boolean subalgebra of  an OA coincides with the usual definition of  a 
Boolean subalgebra of an OMP when the underlying OA happens to be an 

a t e t 

a e 

0 

Fig.  1. G12. 
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0 

Fig. 2. M02.  

e t 

OMP. One reason we are considering this weak definition of a sub-OML is 
that over the years it has been a common practice in this field to defne 
subobjects of  different objects from different categories. For instance, 
sub-OMLs and Boolean subalgebras of an OMP are examples of  such a 
practice. Another reason is that this weak definition serves our purposes. 

Let L be an OA. The following can be shown (see, for example, Foulis 
et al., 1992): For p, q, r~L,  {p, q, r}~J(L)  iff p 3_ q and p ~ 3_ r, and L is 
an O M P  iff every three pairwise orthogonal elements o f  L are jointly 
orthogonaL It can also be shown (Kalmbach, 1983; w Lemma I) that in an 
OML,  pairwise compatible subsets are jointly compatible. 

Evidently, every jointly orthogonal (resp., jointly compatible) subset of  
an OA is pairwise orthogonal (resp., pairwise compatible) but not conversely, 
as can be easily seen from the Wright triangle example (Foulis et aL, 1992). 
Even ~ L is an OMP,  there may be subsets o f  L that are pairwise compatible, 
but not jointly compatible, as Ramsay's example shows (Ramsay, 1966). 
Finally, i f  L is a Boolean algebra, then by definition, any two elements o f  L 
are compatible. Hence C(L) = L. However, the converse need not be true, as 
can be seen from the seven-point Fano projective plane example (Foulis et 
al., 1992). 

The following result gives an important necessary and sufficient condi- 
tion for a sub-OML of an OA to be a Boolean subalgebra. It generalizes 
the well-known result that an OML is a Boolean algebra iff disjoint 
elements are orthogonal. 

Theorem 2. I0. Let L be an OA and let B be a sub-OML of L. Then 
B is a Boolean subalgebra of L iff the following condition holds: 

Vx, y~B ,  x A B y = 0  ~ x 3 - y  

Proof. (=~): Assume that B is a Boolean subalgebra, and let x, y ~ B be 
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such that x v By = 0. Then, by the distributive law, 

x = ( x  ^By) vB(x ABy,) 

----X ABy ' 

which implies that x < n Y' and hence x < y ' ,  i.e., x _1_ y. 
( ~ ) :  Assume that the sub-OML B satisfies the stated condition. We 

need to prove that B is distributive. Let x, y, z ~B. Clearly, 

x ^ S ( y  v n z ) - > ( x  ^By)  v B ( x  ^Bz)  (2.1) 

To show equality holds in (2.1), it suffices to show, thanks to the OMI, that 

x AB(y  VBz) ^B(X'  v B y  ') ^B(X'  vBz  ' ) = 0  (2.2) 

To this end, let b ~ B  be such that 

b<-{x,y vBz, x" vBy ' , x  ' vBz '} 

Since y ^ B [x ^ B (x' v B y,)] = 0, the hypothesized condition implies that 
x ^ B (x' v By,) _1_ y. It follows that b < x /x B (x'  v By,) < y,. Similarly, 
b <--z'. Thus b ~y"  ^ B z ' = ( y  v Sz) ". This and the assumption that 
b -< y v B z show that b = 0. Now (2.2) follows. �9 

Using Varadarajan's Lemma (Varadarajan, 1962, Proposition 3.8), it 
is not difficult to show that if P is an OMP and x eP, then C(x) is a 
sub-OMP of P. We conclude this section with the following result, which 
will be used in the following sections. 

Corollary 2.11. Let P be an OMP and X ~ ( P )  be pairwise orthogo- 
nal. Then F(X) is a Boolean subalgebra of  P and hence X is jointly 
orthogonal. 

Proof. Write X = {xl . . . . .  xn}. We may assume that 0r We pro- 
ceed by induction on n. If  n = 1, then X = {xl} and F({xl}) = {0, 1, x, x'} 
is a Boolean subalgebra that has at most four elements. 

Assume that n > I and F({xl . . . . .  xn_ 1}) is a Boolean subalgebra. 
Since xi _Lx~ Vi~{1 . . . .  , n - t } ,  we have {xl . . . .  ,xn_~}~_C(x~). This 
and the fact that C(x~) is a sub-OMP of P imply that F ( { x ~ , . . . ,  x ,_  1}) 
C(x,). Now, by Lemma 9 of Ramsay (1966), 

r ( r ( { x l , . . . ,  x ._ l  }) u {x. }) = r({x~ . . . . .  x. )) 

is a Boolean subalgebra. This completes the induction. II 

3. KEY LEMMAS 

In this section we state and prove some key results about orthoalge- 
bras. Some of  these results will be used in proving theorems in the 
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following section, and some have their own interest and may prove to be 
useful in the study of orthoalgebras. We start with the following lemma, 
which generalizes Lemma 2.14 of Riittimann (1989). 

Lemma 3. I. Let L be an OA, let I" ~_ L be such that ~ ( X )  _c J(L), and 
let M, N ~ ( X ) .  Then we have the following: 

(i) M n N ___ {0} iff (~  M L (~  N. In either case, 

(~ M G (~ N =  (~ ( M w N) 

(ii) M c N iff ~ )  M i ( (~  N)'. In either case, 

1~) M O ( ( ~  N)'--- [1~) (N\M)] '  

(iii) ( ( ~  M)'  • ( ( ~  n ) '  iff ( ( ~  N ) ' =  (~  (M\N). In either case 

( @  M ) O ( ( ~  N) ~= [ ( ~  ( M n N ) ] '  

Proof It is essentially the same as the proof of Lemma 2.14 of 
Rfittimann (1989). I 

Lemma 3.2. Let L be an OA and let 2" ___ L be such that o~(X) ___ J(L). 
Then 

B(X) :-- {(~) M: M 6 ~ ( X ) }  u {( (~  N)': N e ~ ( X ) }  

(where (~  ~ : = 0 ,  and (~) {x} = x  VxsX)  is a sub-OMP (see Corollary 
2.8) containing X. 

Proof By its definition, B(X) is closed under '; and, by Lemma 3.1, 
B(X) is closed under the @ of orthogonal pairs. Also, 0 = @ ~eB(X) .  
Now to prove that B(X) is a sub-OMP, we need to show that 

a,b~B(X), a L b  ~ a vmX)b exists 

This follows immediately from Lemma 3.1, which yields that a v ~(x)b 
exists and a vS(X) b = a Gb. I 

Lemma 3.3. Let L, X, and B(X) be as in the statement of Lemma 3.2. 
Then aCb for all a, b e B(X). 

Proof It is enough to show that ( (~  M)C( (~ N) VM, Neon(X). For 

((~) M)C( (~ N) ~ ( (~ M)C( (~  N)' 

( (~ M)'C( (~ N)" ~ aCb Va, b eB(X) 

Now since 

M = (M\N) w (M n N) and N = (N\M) u (M c~ N) 
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we  have 

and 

Habil 

(~ M = (~ (M\N) (~ ~ (M n N) 

(~ N = (~ (N\M) @ (~ (M n N) 

(~ (M\N) • (~ (N\M) 2. ~ (N\M) 3_ (~ (M\N) 

Since {(~ (M\N), ~ (N\M), (~ (M n i ) }  _~ B(X) and, by Lemma 
3.2, B(X) is a sub-OMP, Corollary 2.11 shows that {(~(M\N), 
(~ (N\M), (~ ( i n N ) }  is jointly orthogonal. Now, by Lcmma 2.6, 
( ~ M)C( ~ N). �9 

The following theorem gives a sufficient (and, trivially, a necessary) 
condition for a subset of an OA to be jointly orthogonal. 

Theorem 3.4. Let L be an OA and let X _ L. If every finite subset of 
X is jointly orthogonal, then X is jointly orthogonal. 

Proof Assume that ~ ( X )  c J(L). Form B(X) as in the statement of 
Lemma 3.2. By Lemma 3.2, B(X) is a sub-OMP, and, by Lemma 3.3, it is 
pairwise compatible. Now, using the fact (Lock, 1981, Theorem 4.5.6) that 
an OA is a Boolean algebra iff it is an OMP and pairwise compatible, we 
infer that B(X) is a Boolean subalgebra containing X. �9 

Corollary 3.5. Let P be an OMP and let X ___ P. Then X is jointly 
orthogonal iff R" is pairwise orthogonal. 

Proof By Corollary 2.11, every finite pairwise orthogonal subset of X 
is jointly orthogonal. Now apply Theorem 3.4. �9 

The fbllowing theorem is analogous to Theorem 3.4. It gives a 
sufficient condition for a subset of an OA to be jointly compatible. 

Theorem 3.6. Let L be an OA and let X _  L. If every finite subset of 
X is jointly compatible, then X is jointly compatible. 

Proof Assume that every finite subset of X is jointly compatible. Let 
Fe~(X). Then, by assumption, F is contained in a Boolean subalgebra of 
L. Hence F is contained in a smallest Boolean subalgebra, namely F(F), the 
Boolean subalgebra generated by F. It is well known (Halmos, 1963) that 
F(F) is isomorphic to the Boolean algebra 2 k (of 2 k elements), where 
k = 2Je. Hence it follows that 

F, G ~ ' ( X ) ,  F _~ G ~ F(F) is isomorphic to a subalgebra of F(G) 

Now, as argued in the proof of Lemma 2.9, the last implication shows that 
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UF(~(X" ) F(F) is a Boolean subalgebra containing t:. Therefore X is jointly 
compatible. I 

Definition 3.7. Let L be an OA and let XeJ(L). If the supremum of 
the set { t~  F: F e ~ ( X ) }  exists in L, then we define 

|  V @F 
FeN~:(X) 

Note that if L is an OA, a, beL, and a ~ b, then {a, b}eJ(L) and so 

(~ {a ,b}=V {O,a,b, aEDb}=a~b 

Similarly, for any {al . . . . .  a, }eJ(L) 

(~ {al . . . . .  an}=alG.. .  Ga n 

Thus the above definition of (~ is consistent with the partial binary 
operation (~ that is defined on L and serves as a natural extension of its 
(finitary) orthogonal sum that we established in Section 2 (see Convention 
2.5), 

Lemma 3.8. Let L be an OA and let X, Y ~_ L. 
(i) If Xc~ y c_ {0}, Xw YeJ(L), and 1~ X, (~  Y both exist, then 

@xz|  
(ii) If, in addition to the hypotheses of (i), ~ )  (Xw Y) exists, then 

(@ x)@(@ Y)= • (x~Y) 

Proof. (i) Clearly ~ F.l_ (~  G V F e : ( X )  and VGe~(Y). So the 
sets {(~) F: F e : ( X ) }  and { ~  G: Ge:(Y)}  are pairwise orthogonal. Fix 
Fe:(X) .  Then 

(~  F -< ( (~ G)' VG e ~(Y) 

so, as V~:(Y) (~ G exists, the generalized De Morgan law implies that 

( ) (~F< A (| V |  
Ge,~ ( Y) Ge,g~( y)  

Since this holds VFe~-(X), we obtain 

v 
F~,:~(X) G~ Y) 

and therefore (~  X • (~  Y. 
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(ii) Clearly, 

(~F,-< V @)F VF, eff(X) 
Fe~(X)  

(~ Fz <-- V (~ G VF2eff(Y) 
G e ~ ( Y )  

So, as VF~.~,(x ) @ F s V a ~ ( r )  (~  G, part 1 of Lemma 2.1 implies that 
VF1 e~-(X), VF2e~(Y), and VHef(Xw Y) 

-<- r V G) 

< r V G) 

( ) ( . o )  " V |  V O F  �9 V 
He.~'(Xu Y) F~ ~'(X) Gs 

On the other hand, it is clear that 

V OF, V | V @H 
F ~ ( X )  G~-(Y)  HE,.~(Xu Y) 

so, as (VF~(x)0  F) D (VG~s*(r)O G)is a minimal upper bound for the 

set {Vr~.*"-(x) (~ F, V,a~,.~(r) (~) G}, we have 

Fe~t.X) / k,G~J(Y) H~,.~(Xu Y) 

The following corollary is simply a paraphrasing of part (ii) of Lemma 
3.8. 

Corollary 3.9. Let L be an OA and let (xi)i, (Ys)J c_ L. If V;x,., VJ&, 
and Vi.j(&@yj) all exist in L, and if V~x~ L Vjys, then 

Lemma 3.10. Let L be an OA and let Y~J(L). If T1, T2 ~ Y are such 
that (~  T1, @ T2 both exist and @ 7'1 -- @ T2, then T 1 = T2. 

Proof We may assume that 0$Y. Suppose that 3tsT2\Tt. Since 
Tlw{t}sJ(L), there exists a block B~_Tlw{t }. Then VFe~(T1), 
@ F --- V s F -< t', which implies that @ T1 = VF~:r(:%) @) F ~ t' and 
therefore t • O Tl = @ Tz. As t -< @ T2 (since teT2), this implies that 
t • t and hence t = 0, a contradiction, m 
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The following theorem will be used later when we study ortho- 
summable orthoalgebras and o--orthoalgebras. It generalizes Lemma 2 of 
Ramsay (1966). 

Theorem 3.11. Let L be an OA. If XeJ(L) is such that @ T exists in 
L f o r a l l  T ~ X a n d  ~ X = l ,  then 

B(X),= { | T: T x} 

is a complete Boolean subalgebra of L containing X and the mapping 
T ~ (~  T: ~(X) ~ L is an isomorphism of ~(X) onto B(X). 

Proof. Since for every T ~_ X, (X\T) n T ~_ {0}, Lemma 3.8 implies 
that 

(i) ( (~ T)' = (~ (X\T)  eB(X) VT ~ X 

Also, Lemma 3.8 implies that 

(ii) (~  T11 (~  7"2 ~ ( ( ~  T1) G((~)  7"2) =- (~  (TIwT2)eB(X) 

and, by the hypothesis, we have 

(iii) ~ X = 1 e B(X) 

It follows from (i)-(iii) that B(X) is a sub-OA of L. 

Claim. T ~ ~ T: ~(X) --* B is an isomorphism. 

Note first that, by Lemma 3.10, the mapping ~ is injective, and it is 
clear that it is surjective. Note next that, by (ii), the mapping • is a 
morphism of OAs. Now to prove the claim, it suffices to show, using 
Theorem 2.9 of Habil (1993), that VT, S __ X, 

(~ T <- (~ S ~ T ~ S 

To this end, suppose that ~ T_< ~ S. We may assume that 
T, S ___ X\{0}. Then, since B(X) is a sub-OA, there exists R ~_ X such that 
(~  R.L ~ Tand  

(~ S =  ~ T ( ~ ( ~  R(2 (~ (TwR) 

so Lemma 3.10 implies that S = T u R  and hence T c S. This proves the 
claim. 

Now since ~(X) is a Boolean algebra, the abow. ~ claim shows that 
B(X) is a Boolean algebra. [] 

The remaining part of this section, which is quite involved, is devoted 
to proving a generalized associative law for the operation G in orthoalge- 
bras (see Theorem 3.16 below). As we shall see, this result generalizes a 
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similar result (Foulis and Bennett, 1993, Lemma 2.9; Wilce and Feldman, 
1993, Lemma 1.4) and will prove to be useful when we study ortho- 
summable orthoalgebras in the next section. We first make a digression to 
study "interval orthoalgebras." Let L be an OA. Recall the notation that 
for x ~L, 

[0, x] = {aeL:  a < x} 

Note that the interval [0, x], with the orthogonality relation being the 
restriction of the orthogonality relation on L, need not be an OA under the 
@ of L. For example, let L be the Wright triangle, where the atoms are 
labeled as in Figure 3. Then {a, b, c, d} _~ [0, x] and b • c, but b @c = 
e' 7~ x. 

However, we can make each interval [0, x] in L into an OA as follows. 

Definition 3.12. Let L be an OA and let x e L .  We define an orthogo- 
nality relation • on [0, x] as follows: 

a •  iff a _L b in L and a • b  < x Va. be[O,x] 

This induces a @ on [0, x], which we denote by Ox, where for a, b el0, x], 
a @x b is defined in [0, x] iff a • b. It can be easily checked that with this 
induced addition, ([0, x], Gx, 0, x) is an OA. We call such an OA an induced 
orthoalgebra. Note also that the orthocomplementation p ~ , p ' : L ~ L  
induces a relative orthocomplementation a ~,  a'X: [0, x] ~ [0 ,  x] which is 
given by 

a'~,=x - a  Va e[0, x] 

Furthermore, < fo,~l is the restriction of - to [0, x]. Indeed, suppose that 
a, be[0, x] and a < b in L. Then 3 c e L  such that c _L a and a O c  = b. Now 
c - < a O c = b - < x = ~ c e [ 0 ,  x]. This shows that a <t0,~lb. On the other 
hand, if a, be[0, x] and a <to.~l b, then a < b in L is obvious. 

r 

x e 
cI b Fig. 3. Greechie diagram of the Wright triangle, 
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From now on, each interval [0, x] (x~L) will be considered to be an 
induced orthoalgebra. 

Lemma 3.13. Let L be an OA and let x~L. If B is a Boolean 
subalgebra of [0, x], then we have 

a,b~B and a _ k b = ~ a @ b < x  ( i . e . , a .Lxb)  

Proof. Let B be a Boolean subalgebra of  [0, x] and let a, b ~B. Clearly, 
a L b = ~ a  A L b = 0 = ~ a  ^~~ (because <-~o,xl= -<tt0,xl)~a AB 
b = 0  (because <-~ = <Eo,x~ta) =~a Lab (by Theorem 2.t0, since B is a 
Boolean subalgebra of  [0, x l ) = ~ a  • (by Proposition 2 .2) - ,~a@ 
b<-x. II 

Let L be an OA and let x, y e L be such that x _t_ y. If B is a sub-OA 
of [0, x] and D is a sub-OA of [0,y], then b • dVbeB and VdeD. We 
define 

B•D;={bGd:  beB, d~D} 

The following theorem is a key to proving the main result of this 
section. 

Theorem 3.14. Let L be an OA and let x, y s L  be such that x • y. If 
B is a Boolean subalgebra of  [0, x] and D is a Boolean subalgebra of  [0, y], 
then B O D  is a Boolean subalgebra of  [0, x Oy].  

Proof. Note that if b O d e B  (bD, then b <- x and d -< y. So, as x L y, 
part 1 of Lemma 2.1 implies that b q~d-< x @y. Thus B |  ~_ [0, x Gy].  

First, we claim that B GD is a sub-OA of [0, x |  To see this, let 
b~,b2eB and dl,dz~D be such that blOd~,b20d2EBOD , and 
bl(~dl2-(~@y)b2(~dz. This means that bl~dt ,b~@dz,(bl@dl)@ 
(b2@d2) <-x Gy. By the commutativity and associativity of @, we have 
(b~ @ d~ ) (~ (b2 G d2) = (b~ @ b2) @ ((/i @ d2). This implies that b~ • b 2 and 
dl 2. dz. Hence, by Lemma 3.13, bl • bz and d~ _Ly d2. Since B (resp., D) 
is a Boolean subalgebra of  [0, x] (resp., [0, x]), it follows that bl @bz~B 
and d~ @d2eD. Therefore 

(bl @ dl) @(bz@d2)~B @ O 

For any b (~ deB 0 D, we have 

x @ y = (b @ (x - 6)) @ (d @ ( y  - d)) 

: (b @ d) @ (x - b) @ ( y  - d) 

by the commutativity and associativity of  (~, which implies that 

(b @ d ) ' ( ~ ' )  = (x - b) ~ (y  - d) ~B (~ D 

Furthermore, 0 = O~OsB(~D. Thus B @D is a sub-OA of [0, x ~ y ] .  
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Second, we claim that B ~ D  is isomorphic to the Boolean algebra 
B x D, where B x D = {(b, d): b~B ,  d~D} .  To see this, define ~b: B x D 
B G D  by 

~b(b, d) = b ~ d V(b, d) ~B x O 

We have the following: 
(i) ~b is surjective. This is obvious. 
(ii) ~b is injective. To see this, suppose that bl @ dl = b2 @ d2 for some 

bl, b2~B and d~, d2~D. We must show that bl = b2 and dl = d2. Using the 
commutativity and associativity of O, we have x = b l @ ( X - b l )  and 
y = d i G ( y - d 1 ) ;  so 

x (~ y = b, O d~ G ( x  - b,)  G ( y  - d , )  

= b2 @ d 2 0 ( x  - bl) G ( y  - d l )  

= (bz@(x  - b~)) G ( d z ~ ( y  - dl)) 

This implies that b2 • x - b~ and d2 _1_ y - d~. Since be, x - b~ eB,  and B is 
a Boolean subalgebra of [0, x], Lemma 3.13 implies that b 2 @ ( x -  bl) < x. 
Similarly, d 2 @ ( y - d ~ ) < - y .  Now part 2 of Lemma 2.1 implies that 
b2 �9 (x - bl) = x and d2 �9 (Y - d l  ) = y. Hence 

b 2 G ( x  - b ~ )  = b, @(x - h )  and d 2 @ ( y  - d ~ )  = d~ @(y  - d l )  

So the cancellation law implies that b 2 = b 1 and d2 = d~. Therefore ~ is 
one-to-one. 

(iii) 0 is a morphism. To see this, suppose that (bl, d2) _L (b2, d2) in 
B •  This means that b~ A_b e in B and dl A_d2 in D. Hence 
bl _k:, b2, d~ l y  d2, and so b~ -< b~ x = x - b2 and d~ < d'z y = y - dz. Since 
x A _ y = - x - b 2 _ L y - d 2 ,  part 1 of Lemma 2.1 now shows that b~O 
dl < (x - b2) @ (y  - d2) = (b2 @ d2) "(~*y), i.e., ~b(bl, d~) _k(x~y~ q~(b2, de). 
Moreover, the commutativity and associativity of @ yield that 

~((b,, a,) @(b~, 4))  = ~b(b, @b~, a, @ 4 )  

= (b, O d , )  G (b2 G d2) 

= q~(bl, d,) G ~b(b2, d2) 

This and the fact that ~b(x, y) = x ~ y  show that ~b is a morphism of OAs. 
(iv) ~b -1 preserves -<. To see this, suppose that b ~ d ~ , b 2 @ d 2 ~  

B ~ D, and b~ ~ d~ < b2 ~ d2. Then, since B ~ D is a sub-OA, there exists 
b ~ d ~ B ~ D  such that ( b ~ d ) _ k ( b ~ d , )  and b 2 ~ d 2 = ( b ~ d ~ ) ~  
(b @d) = (b, @b) ~ ( d ,  @d) =~ ~b(b2, d2) = q~(b, ~ b ,  d, ~ d ) .  So, as q~ is 
one-to-one, this gives (b2, d2) = (b~ ~ b, d~ @ d) =~ b2 = b~ @ b and d2 = 
d t ~ d  ~ b~ < b~ and d~ <-d2=~(bl,d~) - (b2, d2). 
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Now combining (i)-( iv) together, it follows from Theorem 2.9 of 
Habil (1993) that ~b is an isomorphism. Thus, as B • D is a Boolea~ 
algebra, we conclude that B ~ D is a Boolean subalgebra of [0, x @ y]. 

Here is an important application of Theorems 3.11 and 3.14. 

Lemma 3.15. Let L be an OA and let X, Y~J(L) be such that @ X 
and ( ~  Y exist, X u { ( ( ~  X)'}, Y w { ( ( ~  Y)'}eJ(L), (~ ,5 exists for all 
A c _ X u { ( t ~ X ) ' } ,  and (~ )F  exists for all F ~ Y ~ , { ( ( ~ ) Y ) ' ~  If  
( ~  X_l_ (~) Y, then Xca Y~_ {0} and X~YeJ(L) .  

Proof First, if z~Xc~ Y, then the hypothesis that (~) X _k @ Y and 
the fact that subelements of orthogonal elements in any OA are aiso 
orthogonal imply that z I z =~ z = 0. Therefore X c~ g ~_ {0}. 

Second, we show that XuYsJ(L) .  Let X , = X u { ( @ X ) ' }  and 
17:= Y u {( (~  Y)'}. By the hypothesis, )?, 17sJ(L) and (~  Jr 1~ 17 exist. 
Hence, by Lemma 3.8, ( ~ 2 = ( ( ~ X ) @ ( ( ~ X ) ' = I  and (~) ] ?=  
(1~ Y ) ~  ( (~  Y) '= 1. Now two applications of Theorem 3.11 yield thai 
there exist Boolean subalgebras 9(J?), 9(17) of L such that X, @ ?(~ B(~) 
and Y, 1~ YeB(17). Let 

B~.'=B()[) c~[0, (~) X] and B2:=B(17)c~[(), @ Y] 

We claim that B~ is a Boolean subalgebra of [0, (~  X], B2 is a Boolean 
algebra of [0, (~) Y], X ~ B l, and Y _c. B2. To see this, note first tha~ 
O, (~ XeB~. If  a, b~B~ and a •  b, then a 3_ b and a@b -<. @ X. A!s;:., 
a, beB(X) =~ a ~bsB(X) .  Therefore a @| b = a Gb ebb. lf aEB~, thea 
asB($) and a -< ( ~  X. So, as a, (~ XeB(X~), (~ X -  aeB(.~). Hence, _~s 
( ~  X -  a < ( ~  X, we obtain 

a "~x= (~ X - a ~ B ( 2 ) n [ O ,  (~ X] = B~ 

Thus we have shown that B~ is a sub-OA of [0, (~  X]. To show that B~ i~: 
a Boolean subalgebra of  [0, ( ~  X], we must show, in view of Theorem 
2.10, the following: 

(a) a, beB2 ~ a v s~ b exists. 
(b) a,b~Bi,a A n ~ b = 0 ~ a _ t _ ~ x b .  

As for (a), let a, bsB~. Then a, beB(J?), and a, b -<- (~  2". Since B(.~) 
is a Boolean subalgebra of L , a  vs(X)b exists and therefore 
a v s(~ b < ( ~  X [since ( ~  X~B(~)].  This puts a v m2~ b in B~. Now, if 
ueBt and a, b < u in B~, then a, b -< u in B(J?). Hence a v ~)b b ~ u and 
therefore a v s~ b exists and equals a v s(~ b. 

As for (b), let a, bsB~ and assume that a A ~ b = 0 .  Then 
a ^ n(Xo b = a A s~ b = a A s, b = 0. So, as B(J?) is a Boolean subalgebra of 
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L, Theorem 2.10 implies that a • b. Hence aGb =a vS(X~ < (~ X a n d  
therefore a "• b. 

We have shown that BI is a Boolean subalgebra of [0, (~ X], and 
similarly B2 is a Boolean subalgebra of[0, ~)  Y]. This proves the claim. Now 
apply Theorem 3.14 to get that BlaB2 is a Boolean subalgebra of 
[0, ( ~ X) G ( (~  Y)]. Since [0, (( (~  X) @ ( ~ )  Y))'} is a Boolean subalge- 
bra of [0, (( (~  X) @( (~  Y))'], apply Theorem 3.14 again to get that B~ G 
B2 G {0, ( (~)  X) @ ( ~ )  Y))'} is a Boolean subalgebra of [0, ( (~)  X) @ 
( ( ~  Y ) ) G ( ( ( ~ ) X ) @ ( ~ )  Y ) ) ' ] = [ 0 , 1 ] = L .  Since XuY~_BI@B2@ 
{0, (( ~ X) G ( O Y))'}, we are done. �9 

Combining Lemmas 3.8 and 3.15, we obtain the following result, which 
we consider the main result of this section. 

Theorem 3.16. Let L be an OA and let X, YEJ(L) be such that (~) X 
and (~  Y exist, X u { ( ~  X)'}, Y u { ( ~  Y)'}~J(L), (~  A exists for all 
A _ X u {( (~  X)'} and (~ F exists for all F ~ Y u {( (~  Y)'}. Then: 

(i) ( ~ X •  Y ~, Xc~Y_{0} and XuY~J (L) .  
(ii) If, in addition, (~  (Xu Y) exists, then 

@x,• @ r @ ( x u r ) = ( |  Y) 

The following result, which appears as Lemma 2.9 of Foulis and 
Bennett (1993) and as Lemma 1.4 of Wilce and Feldman (1993), is an 
immediate consequence of Theorem 3.16. 

Corollary 3.17. Let L be an OA and let F, G ~ ( L )  nJ(L).  Then 

( ~ F L  (~) G ~:~ FnG_~{0}  and F u G  is jointlyorthogonal 

In either case, 

(~) ( F u G )  - - ( ( ~  G) (~((~) G) 

Proof The hypothesis that G, G e~(L) c~ J(L) implies that 
(~) F, (~ G exist and Fu{ ( (~ )  F)'}, G u { ( ( ~  G)'}~J(L), hence (~  A 
exists VA _ r u {( (~  F) } and (~  F exists VF _ G u {((~) G)'}. Now ap- 
ply Theorem 3.16. �9 

We conclude this section with the following lemma, which will be used 
in the next section. 

Lemma 3.18. Let L be an orthoalgebra and let X~J(L) be such that 
a ~ , = ~ X  and ( ~ ( X u { a ~ } )  both exist. Then Xu{a'~}~J(L) and 
~)  (Xu  {a;}) = 1. 

Proof First, to show that X u  {a'~}~J(L), it is enough to show, using 
Theorem 3.4, that each Fe~(Xu{a'~}) is jointly orthogonal. Let then 



Orthosummable Orthoalgebras 1977 

Fe~(Xw{a'~}).  If F c_X, then, by the hypothesis, feJ(L)  and we are 
done. So we may assume that 

F=Gw{a'~} for some Geo~(X) 

By the hypothesis, G~J(L), so (~  G _1_ a'~ = (~  {a'~} since (~  G <- a~. 
Therefore, by Corollary 3.17, F = G w {a'~}~J(L), as desired. 

Second, to show that (~  (Xw {a;(}) = 1, apply part (ii) of Lemma 
3.8. [] 

4. ORTHOSUMMABLE ORTHOALGEBRAS 

To be able to efficaciously define and manipulate orthogonally o--addi- 
tive measures or states on orthoalgebras, one needs to define a reasonable 
notion of ~-orthosummability for orthoalgebras. This was first done by 
Younce (1987). According to Younce, an orthoalgebra L is ~-ortho- 
summable (or what he calls a ~-orthoalgebra) iff for every countable jointly 
orthogonal subset X E L  and for all blocks A, B containing X, the 
supremum ~/A X of X as calculated in A and the supremum ~/B X of X as 
calculated in B both exist and are equal. This definition seems rather strong 
and it refers explicitly to the blocks of the orthoalgebra. Thus there has 
been a need to find a more reasonable notion of o--orthosummability for 
orthoalgebras that does not refer explicitly to the blocks of the orthoalge- 
bra and that would be analogous to the well-known notion of o--orthocom- 
pleteness for orthomodular posers as weU as to ~r-completeness for Boolean 
algebras (Gudder, 1988; Halmos, 1963; Kalmbach, 1983). 

This we do in this section, where we introduce notions of o--ortho- 
summability and (more generally) orthosummability for orthoalgebras that 
naturally extend the notions of a-orthocompleteness and orthocomplete- 
ness for orthomodular posets. 

About the time this paper was written, Wilce and Feldman (1993) 
offered another definition of cr-orthosummability (or what they called a 
o--orthoalgebra). According to Wilce and Feldman, an orthoalgebra is a 
~r-orthoalgebra iff every increasing sequence in it has a supremum. It turns 
out that Wilce and Feldman's notion of a ~r-orthoalgebra is equivalent to 
our notion. 

In the sequel, we prove that every chain in an orthosummable orthoal- 
gebra (and every countable chain in a o--orthoalgebra) has a supremum; 
and, as a consequence of this, we obtain the result that ,every chain in an 
orthocomplete orthomodular poser has a supremum. We also present a 
proof to a (strong) converse of the latter fact; namely, we show that if P 
is an orthocomplemented poset in which (i) finite orthogonal suprema exist 
and (ii) every chain has a supremum, then P is orthocomplete. 
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L e m m a  4.1. Every chain in an OA is jointly compatible. 

2~roof Let L be an OA. We first claim that every finite chain in L is 
jointly compatible. Let P0 -P~ < " " ' -< Pn be a finite chain in L. We may 
assume that it is strictly increasing. Consider the difference set 

D := {P0, PI - P o ,  P2 - P l  . . . . .  Pn --Pn -- 1 } 

By Theorem 2.I5 of Riittimann (1989), the set 

P ( D ) , = { ( ~  M: M___D}w{((~  U)':  N_~D} 

is a sub-OMP of L containing D. Since d is clearly pairwise orthogonal, 
Corollary 2.11 shows that D is jointly orthogonal. This implies that 
(~Po, �9 � 9  P, } is jointly compatible. 

Now the lemma follows from the above claim and Theorem 3.6. �9 

Definition 4.2. An OA L is called m-orthosummable for a cardinal m if 
for every X ~ J ( L )  with IXI -< m we have 

@ X . . =  V ( ~ ) F  
F~ ,~ 

exists (in L). 

The following result is a generalization of the lemma in Holland 
(1970) to orthoalgebras; its proof, which we omit, is essentially the same as 
the proof  of that lemma. 

Lemma 4.3. Let L be an m-orthosummable OA, ~ an ordinal number 
satisfying [o-[ < m, and {b~: ~ < o-} a chain in L that satisfies the following: 

bo = 0. 
(fi) /~ a limit ordinal <o- =~ V {b~ :~ </~} exists and equals b~. 

Then for every ordinal/~ satisfying 2 -< / /<  ~ we have 

V <8} = @ +1 <8}  

The following result is a generalization of  the theorem in Holland 
(i970) to orthoalgebras. The proof  which we provide here due to its 
delicacy is essentially the same as the proof  of  that theorem. 

Theorem 4.4. Every chain of  -<m elements in an m-orthosummable 
OA has a supremum. 

P r o o f  We proceed by induction. Let L be an m-orthosummable OA 
and let {c~: ~ ~Z} be a chain in L with IZ[ -< m and assume that the join of  
any E'-indexed chain exists in L when [E'[ < IX[. Let a be the least ordinal 
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corresponding to IZI. We may assume that IZI is infinite and that we have 
replaced the set E by the set {e: e < a} so that we are dealing with an 
ordinal-indexed chain {c~: y < a } .  If a is not a limit ordinal, then 
V {cr: ~ < a} = c~_ 1 and we are done. Thus we may assume that a is a 
limit ordinal. In this case, the induction hypothesis implies that 

b~,=V{cp:p<cr } exists Vcr 

Note that e <-/~ < a => b~-< b~ so that the family {b~: c~ < ~} forms a 
chain in L; and, moreover, it satisfies the following: 

(i) b0 = 0. 
(ii) If  fl is a limit ordinal, then 

V V p < 04 =V p =bp 

Since {b~:~ <o-} is a chain, it is jointly compatible by Lemma 4.1. It 
follows that the pairwise orthogonal set 

O'.={b~+l-b~: ~ + 1 <~r} 

is jointly orthogonal; therefore ( ~  D exists, since L is m-orthosummable. 
We claim that V {% : p < a} exists and equals ~ )  D. To see this, we 

first show that ~ )  D is an upper bound for {cp : p < a}. Indeed, if fl < a, 
then, since a is a limit ordinal, we have fl + 2 < a; whence, using Lemma 
4.3, 

O -  < V {Cp: p -</? + 1} = V  {b~: ~ - ~ + 1} 

= V { b ~ : ~ < / ~ + 2 } = ~ ) { b o + , - b p : p + l  <-]~+2} 

gOD 
Next, we show that ( ~  D is the least among all such upper bounds. To see 
this, let D~;={ba+~-b~:~=O, 1 . . . . .  ~ } , a < a .  We first establish the 
following: 

@ O~b~+ 1 Vcc<a (4.1) 

Indeed, fix ~ < a and fix a block B that contains the chain {b~ : ~ < a}. 
For every Fe~.~(D~), we have ~)F=VSF<b=+~. Hence ~ ) D ~ =  
VF~,~-(D~) (~  F<_b~+~, as desired. Now let u~L and cp <uVp <a. If  
FE~(D), then 3~ < o- with F ~ D~. Since o- is a limit ordinal, ~ + 1 < a. tt  
follows from (4.1) that 

~ F < ~ D~<-b~,+l=V {cp:p<o: + l} <-u 
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which implies that (~  D = VF~(D) (~  F < u. Therefore V {cp: p < a} 
exists and equals (~  D. This completes the proof of the claim and the 
induction. �9 

Definition 4.5. We call an OA L-orthosummable if L is m-ortho- 
summable for every m (or for m =ILl). We call a sub-OA A of an 
orthosummable OA L-suborthosummable if for every X ~ A with XeJ(L), 
we have (~  X~A. 

An OMP P is called orthoeomplete (resp., a-orthoeomplete) if every 
(resp., every countable) pairwise orthogonal subset of P has a supremum 
(in P). Using Corollary 3.5, one can easily show (see Lemma 4.6 below) 
that an OMP is orthocomplete (resp., a-orthocomplete) iff it is ortho- 
summable (resp., No-orthosummable), where N = [~o[. In this sense, our 
notion of orthosummability (resp., N0-orthosummability) for OAs extends 
the (well-known) notion of orthocompleteness (resp., a-orthocompleteness) 
for OMPs. 

It should be noted that Boolean subalgebras of orthosummable or- 
thoalgebras need not be suborthosummable. For example, let 

B(co) ..= { M  ~ co: [M] < ~ or ]~o\M] < ~} 

Clearly, B(cg) is a Boolean subalgebra of the orthosummable OA ~'(~o). 
Since the positive even integers form a jointly orthogonal subset of B(og) 
whose orthogonal sum (which equals its union) does not belong to 
B(~o), B(co) is not suborthosummable. 

Lemma 4.6. An OMP is orthocomplete (resp., a-orthocomplete) iff it 
is orthosummable (resp., b~o-orthosummable ). 

Proof. (~ ) :  Assume that P is an orthocomplete OMP. Let X~J(P). 
Then V x exists, V F =  (~ F exists V F ~ ( X ) ,  and V x is an upper 
bound for { V r :  F ~ ( X ) } .  Let u~P be such that V r <  u Y r s , ( X ) .  
Then, in particular, x<_uVx~X and so V X < u .  Thus ( ~ X =  
Vr~(x~ ( V  F) exists and equals V x. Therefore P is orthosummable. 

(~ ) :  Assume that P is an orthosummable OMP. Let X~_P be 
pairwise orthogonal. By Corollary 3.5, X~J(P); so Vr~(x> ~ F exists. 
Since P is an OMP, (~  F =  V FVFe~(X).  Hence Vr~(..y) @ r = 
V r ~ ( x )  V F = V x exists and P is orthocomplete. �9 

Now Theorem 4.4 yields the following result. 

Theorem 4. 7. Every chain in an orthosummable OA has a supremum. 

The following result was mentioned in Navara and Rogalewicz (1991, 
Proposition 4.5) without proof. 
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Corollary 4.8. Every chain in an orthocomplete OMP has a 
supremum. 

The following theorem shows that the converse of Corollary 4.8 holds 
true even for orthoposets that are nonorthomodular. 

Theorem 4.9. If P is an orthoposet in which (i) every finite orthogonat 
set has a supremum, and (ii) every chain has a supremum, then P is 
orthocomplete. 

Proof(Gudder). Let X ~_ P be an orthogonal set. We may assume that 
0r Let S be the set of all suprema that exist for subsets in X. By the 
hypothesis, any chain in S has an upper bound in S; namely, its supremum. 
By Zorn's Lemma, S has a maximal element Yo = V I10 for some I10 c_ X. 

We claim that Yo=X. Suppose, contrariwise, that there exists 
xeX\Yo .  Then y <- x' YyeYo, so that Y0 = V Y0 < x'. But then Y0 v xeS,  
Moreover, Y o < y 0 v x  since if Y 0 = y 0 v x  (>x),  then y ;<-x ' ;  so 
1 = Y0 v y;  < x' and x = 0, which is a contradiction. But this, in turn, 
contradicts the maximality of Yo. Hence Yo = X and therefore Yo = V X 
exists, as desired, m 

Corollary 4.10. Every chain in an orthosummable orthoalgebra in 
which every block is suborthosummable has a supremum in every block 
containing it, and this supremum is independent of the block containing 
the chain. 

Proof. Note first that it is enough to prove the corollary for an 
m-orthosummable OA L, where m is any infinite cardinal. 

Now a careful examination of the proofs of Lemma 4.3 and Theorem 
4.4 and a careful rephrasing of the induction hypothesis reveal that all joins 
that have been calculated in L can be calculated in any block B containing 
the given chain. We omit the details since they are essentially the same as 
the details of the proof of Theorem 4.4. We only point out that the 
hypothesis that every block of L is suborthosummable will ensure that 
(~  D (as provided by the proof of Theorem 4.4) belongs to every block 
containing the given chain, l 

Lemma 4.1 I. Let L be an orthosummable OA in which every block is 
suborthosummable and let XsJ(L). Then VBX exists in any block B 
containing X, and V s  X = (~ X. 

Proof. Let XeJ(L) and let B be a block containing X. Since L is 
orthosummable, (~ X exists; and since, by the hypothesis, B is subortho- 
summable, (~ XeB.  Evidently, (~  X is an upper bound for X in B. Let 
uEB and x<-uYxeX .  Then ( ~ F = V B F < - - u Y F e ~ ( X )  and hence 
1~ X = ~/F~(x) (~  V -< u. Therefore ~,/" X exists and equals t ~  X. 1 



1982 Habil 

Theorem 4.12. Let L be an OA and consider the following statements: 

1. L is orthosummable and each of its blocks is suborthosummable. 
2. L is orthosummable in the sense of Younce. 
3. Every block of L is a complete Boolean subalgebra. 

Then (1) ~ (2) ~ (3). 

Proof (1) => (2): Let X~J(L). Since, by (1), L is orthosummable, 
(~) X exists in L; and, by Lemma 4.11, k / s X  exists and equals ~ X for 
all blocks B containing X. Thus k/BX exists in B for every block B 
containing X and is independent of such a B. 

(2) ~ (3): By (2), every block is an orthocomplete Boolean algebra, 
and, by the theorem of Holland (1970) (which states that every orthocom- 
plete OML is complete), every such Boolean algebra is complete. [] 

Definition 4.13. Let L be an OA. If L is N0-orthosummable, then we 
say that L is a-orthosummable or, simply, that l is a a-orthoalgebra. We call 
a sub-OA A of a a-orthoalgebra an L sub a-orthoalgebra if A is sub 
N0-orthosummable. 

Note that Boolean a-algebras, unital Boolean a-rings, a-complete 
OMLs, a-orthocomplete OMPs, and the Wright triangle are all examples 
of a-orthoalgebras. Furthermore, the Wright triangle shows that the class 
of all orthosummable OAs properly contains the class of all orthocomplete 
OMPs. 

Note further that in Theorem 4.12, (3) 4" (1), as Example 3.19 of 
Habil (1993) shows. Indeed, this example provides an OMP L which 
is obtained by "pasting" together two disjoint copies L1 and L2 of 
~(Z)  along the "corresponding sections" of all finite or cofinite subsets 
of L~ and L2. As argued in (3.19) of Habil (1993), L is not a-orthocom- 
plete. Consequently, L is not an N0-orthosummable OA. Therefore L does 
not satisfy (I) of Theorem 4.12. On the other hand, L~ and L2 are the 
only blocks of L and both are complete. Thus L satisfies (3) of Theorem 
4.12. 

We do not know at this point whether (2) of Theorem 4.12 implies (1), 
nor do we know whether every block of an orthosummable (resp., cr-ortho- 
summable) OA is suborthosummabte (resp., sub a-orthosummable). 

The following result gives a characterization of o--orthoalgebras in 
terms of their countable chains. Moreover, it shows that the converse of the 
version of Theorem 4.7 involving countable L holds true. However, we do 
not know at this point whether the full converse of Theorem 4.7 holds true. 
That is, we do not know whether an OA in which every chain has a 
supremum is orthosummable. 
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Theorem 4.14. Let L be an orthoalgebra. The following statements are 
equivalent: 

1. L is a o'-orthoalgebra. 
2. Every increasing sequence in L has a supremum (in L); that is, L is 

a o-orthoalgebra in the sense of  Wilce and Feldman (1993). 

Proof (1) ~ (2): This part is a consequence of  Theorem 4.7. 
(2) =~ (1)! Let {xi}i~,oeY(L ). Set s~:=f~)7=ox ~ ( n = 0 ,  1 , 2 , . ,  .). Ev- 

idently, (s,) . . . .  is increasing; so, by (2), ~/,~,o s, exists. 
We claim that t ~ , ~  x~ exists and equals ~/,~,o s,. Indeed, notice first 

that Fe~({xi}i~o~) ~ F~{xo, X l , . . . , x , }  for some nee)  ~ ( ~  F<_- 
(~ {Xo, Xl . . . .  , x , }  for some neco =~ (~  F < V,~o,s,-  This shows that 
~/,~o~ s, is an upper bound for {(~) F: F ~ ( { x ~ } ~ , o ) } .  Second, we show 
that ~/,~o~ s, is the least among all such upper bounds. To this end, let u EL 

and ( ~  F < u VFE~({x~}~,~). Then, in particular, we have s, -< u Vnec0. 
Hence ~ / , ~  s, -< u, and the claim is proved. R 
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